SAVING
EPSON

S1D13A04 LCD/USB Companion Chip

Programming Notes and Examples

Document Number: X37A-G-003-05

Copyright © 2001, 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain
material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.




Page 2 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 3
Vancouver Design Center
Table of Contents
1 Introduction . . . . . . . L e e 11
2 ldentifying the SID13A04 . . . . . . . . . . e e e e 12
3 Initialization . . . . . . L e e e 13
4 Memory Models . . . . . . e 14
4.1 Display Buffer Location : 14
4.2 Memory Organization for One Bit-per- plxel (2 CoIors/Gray Shadas) 14
4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades) . . 15
4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades) . 15
45 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades) 16
4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades) . 16
5 Look-Up Table (LUT) . . . . . . . . e e e e e 17
51 Registers . 17
5.1.1 Look- UpTabIeerteReglster ............................ 17
512 Look-UpTableRead Registers . . . . . . . . . . . . . .. . . . 18
5.2 Look-Up Table Organization e e e e e e e e 18
521 GrayShadeModes . .. ... .. ... . . . ... e 19
522 ColorModes. . . . . . . . . e 22
6 Power Save Mode . . . . . . . 26
6.1 Overview . 26
6.2 Registers . .27
6.21 Power Save Mode Enable ............................... 27
6.22 Memory Controller Power SaveStatus . . . . . . .. .. ... ... .. .. ..., 27
6.3 LCD Power Sequencing . 28
6.4 Enabling Power Save Mode . . 29
6.5 Disabling Power Save Mode . . 29
7 SwivelView' . . . e e e e 30
7.1 SwivelView Registers . 30
7.2 Examples . . 32
7.3 Limitations . 36
731 S\vae|V|eWO°and180° ............................... 36
732 SwivelView90°and 270° . . . . . . ... e e 36
8 Picture-In-Picture Plus . . . . . . . . . . . e 37
8.1 Registers . . 38
8.2 Picture-In- PlcturePIusExamples e e e e e . 45
8.21 SwivelView 0° (LandscapeMode) . . . . . . . .. .. ... 45
822 SwivelView 90° . . . . . .. e 48
Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 4

Epson Research and Development

Vancouver Design Center

823 SwivelView 180° . . . . . . ...
824 SwivelView270° . . . ...

8.3 Limitations .

8.3.1 SwiveView 0° and 180° . . . ..
8.3.2 SwivelView90°and270° . . . . . . .. ...
9 2DBItBLTENngine. . . . . . . . . . . .

9.1 Registers .
9.2 BItBLT DeSCI’IptIOI’]S

921 WriteBitBLTWithROP . . . ... ... ... ... .......
9.22 Color ExpansionBitBLT . ... ... ..............
9.23 Color Expansion BitBLT With Transparency . . . . . . ... ..
924 SolidFIIBitBLT . .. . .. .
9.25 MoveBitBLT in aPositive Direction withROP . . . . . . . ..
9.2.6 MoveBIitBLT in Negative DirectionwithROP . . . . . . .. ..
9.2.7 Transparent WriteBitBLT . . . . . ... ... ... ... ....
9.2.8 Transparent Move BitBLT in Positive Direction . . . . ... ..
9.29 PatternFill BitBLTWithROP . . . . . ... ... ... .....
9.2.10 Pattern Fill BitBLT with Transparency . . . . . . ... ... ..
9.2.11 MoveBIitBLT with Color Expansion . . . . ... ........
9.2.12 Transparent Move BitBLT with Color Expansion . . . . .. ..
9213 ReadBIitBLT . . . . . . . . . . ..

9.3 SI1D13A04 BitBLT Synchronization .
9.4 S1D13A04 BitBLT Known Limitations
9.5 Sample Code

10 Programming the USB Controller . . . . . . . .. ... ... ...

10.1 Registersand Interrupts .

1011 Registers . . . . . . . . e
10.1.2 InterruptS. . . . . o o e e

10.2 Initialization .

1021 GPIOSEUD . . . o o
1022 USBRegisters . . . . . . . . . e

10.3 Data Transfers .

10.3.1 Receiving Datafrom the Host - the OUT command . . . . . ..
10.3.2 Sending DatatotheHost -theINcommand . . . ... ... ..

10.4 Known Issues . .
10.4.1 EP4 NAK Status not set correctly in USB Status Reglster

10.4.2 Writeto EP4 FIFO Vadid bit cleared by NAK . . . . . ... ..
10.4.3 EP3Interrupt Statusbitsetby NAKs . . . . . .. ... ... ..
10.4.4 “EP2Vaid Bit” in USB Status can be erroneoudly set by firmware

S1D13A04
X37A-G-003-05

Programming Notes and Examples

Issue Date: 2002/08/21



Epson Research and Development Page 5
Vancouver Design Center

10.4.5 Setting EP4 FIFO Valid bit while NAKingINtoken . . . . ... ... .. ... .. 110

11 Hardware Abstraction Layer . . . . . . . . . . . . . ... s 112
11.1 Introduction . . . . . . . . . L Lo e e e e e 12
11.2 APIfortheHAL Library . . . . . . . . . . . . . ..o 000000112

1121 StartupRoutines . . . . . . . . . e 113
1122 MemMOry ACCESS . . . v v v ot e e e e e e e e e e e e e 115
11.2.3 ReEQISIEr ACCESS . . . . o o i e e e e e e 116
11.24 Clock SUPPOIt . . . . . . e e 118
11.25 Miscdlaneous . . . . . . . e 119
12 Sample Code . . . . . . 121
13 Sales and Technical Support . . . . . . . . . . . ... 122
Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21 X37A-G-003-05



Page 6 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 7
Vancouver Design Center
List of Tables

Table5-1: Look-Up Table Configurations . . . . . .. . .. .. ... ... ... ... ...... 18
Table5-2: Suggested LUT Valuesfor 1BppGrayShade . . . ... ... ... ... ....... 19
Table5-3: Suggested LUT Valuesfor4BppGrayShade . . . ... .. ... ... ... ..... 19
Table5-4: Suggested LUT Valuesfor4BppGrayShade . . ... ... ... ... ... ..... 20
Table5-5: Suggested LUT Vauesfor8BppGrayShade . . . .. ... ... ... ... ..... 21
Table5-6: Suggested LUT Valuesfor 1bppColor . . . . . . . ... ... ... ... ....... 22
Table5-7: Suggested LUT Valuesfor2bppColor . . . . . . . ... ... ... ... ....... 22
Table5-8: Suggested LUT VauesfordbppColor . . . . ... ... ... ... ... ....... 23
Table5-9: Suggested LUT Values8bppColor . . . . . . . . . .. . . . . . i .. 24
Table7-1: SwivelView Mode SdlectBits . . . . . . . . . .. . .. 30
Table 8-1: 32-bit Address Increments for PIP+ X Position in SwivelView 0°and 180° . . . . . . . 40
Table8-2: 32-bit AddressIncrementsfor ColorDepth . . . . . ... ... ... ... ....... 41
Table8-3: 32-bit AddressIncrementsfor ColorDepth . . . . . ... ... ... ... ....... 42
Table 8-4: 32-bit AddressIncrementsfor ColorDepth . . . . . . . ... ... ... ........ 44
Table9-1: BitBLT FIFOWordsAvailable . . . . . .. . ... ... ... ... .. . . ... ... 60
Table 9-2: BitBLT ROP Code/Color Expansion Function Selection . . . . . . . ... ... .... 61
Table9-3: BitBLT Operation Selection . . . . . . . . . . ... ... ... . ... . ... .. ... 62
Table9-4: BitBLT Source Start AddressSelection . . . . . . . . .. . ... ... ... ... ... 63
Table9-5: PossibleBitBLT FIFOWrites . . . . . . . . . . . . e 69
Table9-6: Possible BitBLT FIFOWrites . . . . . . . . . . . e e e 74
Table9-7: PossibleBitBLT FIFOWrites . . . . . . . . . . . . i 82
Table9-8: PossibleBitBLTFIFOReads . . . . . . . . . .. . .. .. . . i 91
Table 10-1: USB Controller InitidlizationSequence . . . . . . . . . . . . . ... . .. ... ... 96
Table 11-1: HAL Library APl . . . . . e e 112

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 8 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development
Vancouver Design Center

Page 9

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 8-1.
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 9-1:

Figure 10-1.
Figure 10-2:
Figure 10-3:
Figure 10-4:
Figure 10-5:
Figure 10-6:
Figure 10-7:

List of Figures

Pixel Storagefor 1 Bpp in One Byteof Display Buffer . . . . . ... ... ... .... 14
Pixdl Storagefor 2 Bpp in One Byteof Display Buffer . . . . . .. ... ... .. ... 15
Pixel Storagefor 4 Bpp in One Byteof Display Buffer . . . . ... ... ... ... .. 15
Pixel Storagefor 8 Bpp in One Byteof Display Buffer . . . . ... ... ... ... .. 16
Pixdl Storagefor 16 Bpp in Two Bytesof Display Buffer . . . . ... ... ... ... 16
Picture-in-Picture Pluswith SwivelView disabled . . . . . . . . ... ... ... ... 37
Picture-in-Picture Pluswith SwivelView disabled . . . . . . .. ... ... ... ... 45
Picture-in-Picture Plus with SwivelView 90°enabled . . . . . . .. ... ... .. ... 48
Picture-in-Picture Plus with SwivelView 180°enabled . . . . . . . . ... ... .. .. 51
Picture-in-Picture Plus with SwivelView 270°enabled . . . . . . . . ... ... .. .. 54
MoveBitBLTUSage . . . . . . . . . o e e 76
Endpoint 1 DataReception . . . . . . . . . . ... 98
Endpoint 3DataReception . . . . . . . .. .. 100
EndPoint 2 Data Transmission . . . . . . . . . oo 102
Endpoint 4 DataTransmission . . . . . . . . . . v v i e e e e e e 103
Endpoint 4 Interrupt Handling . . . . . . .. ... ... ... ... .. ... .. ... 105
Firmware Looping Continuously on Received OUT packets . . . . . ... ... ... 108
Endpoint 3 Program Flow forSlowCPU . . . . . . .. ... ... ... ....... 109

Programming Notes and Examples
Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 10 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 11

Vancouver Design Center

1 Introduction

This guide discusses programming issues and provides examples for the main features of
the S1ID13A04, such as SwivelView, Picture-in-Picture Plus, and the BitBL T engine. The
example source code referenced in this guide is available on the web at
www.erd.epson.com.

This guide also introduces the Hardware Abstraction Layer (HAL), which is designed to
simplify the programming of the SID13A04. Most S1D13xxx products have HAL support,
thus allowing OEMs to do multiple designs with a common code base.

This document is updated as appropriate. Please check the Epson Research and Devel-
opment website at www.erd.epson.com for the latest revision of this document and source
before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at
documentation@erd.epson.com.

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 12 Epson Research and Development
Vancouver Design Center

2 ldentifying the S1D13A04

The S1D13A04 can beidentified by reading the value contained in the Product Information
Register (REG[00h]). To identify the SID13A04 follow the steps below.

1. Read REG[0OH].

2. The production version of the SID13A04 returns a value of 2Cxx282Ch (where xx
depends on the configuration of the CNF[6:0] pins). This value can be broken down
into the following.

1. The product code for the SID13A04 is 0Bh (001011 binary) and can be found in
bits 7-2 and aso in bits 31-26.

2. Therevision code is Oh (00 binary) and can be found in bits 1-0 and again in bits
25-24.

3. Thedisplay buffer size is 28h (00101000 binary) and is contained in bits 15-8.

Note
The display buffer size is the distinguishing value between the SID13A03 and the
S1D13A04 as they share the same product code and revision code. For the correct dis-
play buffer size for the SLID13A03, see the SID13A03 Hardware Functional Specifica-
tion, document number X36A-A-001-xx.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 13
Vancouver Design Center

3 Initialization

This section describes how to initialize the SID13A04. Sample code for performing initial-
ization of the SID13A04 is provided in thefile init13A04.c which is available on the
internet at www.erd.epson.com.

S1D13A04 initialization can be broken into the following steps.

1. Setadl registerstoinitial values. The values are obtained by using the s1d13A04.h file
that is exported by the 13A04CFG.EXE configuration utility. For more information
on 13A04CFG, see the 13A04CFG User Manual, document number X37A-B-001-xXx.

2. Program the Look-Up Table (LUT) with color values. For details on programming the
LUT, see Section 5, “Look-Up Table (LUT)” on page 17.

3. Clear the display buffer.

If the system implementation uses a clock chip instead of a fixed oscillator, refer to the
HAL (Hardware Abstraction Layer) sample code available on the internet at
www.erd.epson.com. For example, the Epson S5U13A04B00C evaluation board uses a
Cypress clock chip.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 14

Epson Research and Development
Vancouver Design Center

4 Memory Models

The S1D13A04 contains adisplay buffer of 160K bytes and supports color depths of 1, 2,
4, 8, and 16 bit-per-pixel. For each color depth, the data format is packed pixel.

Packed pixel datamay be envisioned asa stream of pixels. In this stream, pixels are packed
adjacent to each other. If apixel requiresfour bits, then it islocated in the four most signif-
icant bits of abyte. The pixel to theimmediate right on the display occupies the lower four
bits of the same byte. The next two pixelsto theimmediateright arelocated in thefollowing
byte, etc.

4.1 Display Buffer Location

The S1D13A04 display buffer is 160K bytes of embedded SRAM. The display buffer is
memory mapped and is accessible directly by software. The memory block location
assigned to the S1ID13A04 display buffer varies with each individual hardware platform.

For further information on the display buffer, see the SID13A04 Hardware Functional
Soecification, document number X37A-A-001-xX.

For further information on the S1ID13A04 Evaluation Board, see the SSBU13A04B00C
Evaluation Board Rev. 1.0 User Manual, document number X37A-G-004-xx.

4.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)

Bit 7

Bit 6

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0

Pixel 1

Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7

Figure 4-1: Pixel Sorage for 1 Bpp in One Byte of Display Buffer

At acolor depth of 1 bpp, each byte of display buffer contains eight adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the unchanged bits and
setting the appropriate bitsto 1.

One bit pixels provide 2 gray shades/color possihilities. For monochrome panels the gray
shades are generated by indexing into the first two elements of the green component of the
Look-Up Table (LUT). For color panelsthe 2 colors are derived by indexing into the first
2 positions of the LUT.

S1D13A04

X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development

Page 15
Vancouver Design Center
4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Pixel 0 Pixel 1 Pixel 2 Pixel 3
bits 1-0 bits 1-0 bits 1-0 bits 1-0

Figure 4-2: Pixel Sorage for 2 Bpp in One Byte of Display Buffer

At acolor depth of 2 bpp, each byte of display buffer contains four adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the unchanged bits and
setting the appropriate bitsto 1.

Two bit pixels provide 4 gray shades/col or possibilities. For monochrome panels the gray
shades are generated by indexing into the first 4 e ements of the green component of the

Look-Up Table (LUT). For color panels the 4 colors are derived by indexing into the first
4 positions of the LUT.

4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Pixel 0
bits 3-0

Pixel 1
bits 3-0

Figure 4-3: Pixel Sorage for 4 Bpp in One Byte of Display Buffer

At acolor depth of 4 bpp, each byte of display buffer contains two adjacent pixels. Setting

or resetting any pixel requiresreading the entire byte, masking out the upper or lower nibble
(4 bits) and setting the appropriate bitsto 1.

Four bit pixels provide 16 gray shades/color possibilities. For monochrome panelsthe gray
shades are generated by indexing into the first 16 elements of the green component of the

Look-Up Table (LUT). For color panelsthe 16 colors are derived by indexing into the first
16 positions of the LUT.

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 16 Epson Research and Development
Vancouver Design Center

4.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
bits 7-0

Figure 4-4: Pixel Sorage for 8 Bpp in One Byte of Display Buffer

At acolor depth of 8 bpp, each byte of digplay buffer represents one pixel on the display.
At this color depth the read-modify-write cycles are eliminated making the update of each
pixel faster.

Each byteindexesinto one of the 256 positionsof the LUT. The SID13A04 LUT supports
six bits per primary color. This translates into 256K possible colors when color mode is
selected. Therefore the display has 256 colors available out of a possible 256K colors.

When a monochrome panel is selected, the green component of the LUT is used to
determine the intensity. The green indices, with six bits, can resolve 64 gray shades.
Display memory values> 64 aretruncated. Thusadisplay memory value of 65 (1000 0001)
displays the same intensity as a display memory value of 1.

4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Red Component Green Component
bits 4-0 bits 5-3
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Green Component Blue Component
bits 2-0 bits 4-0

Figure 4-5: Pixel Soragefor 16 Bpp in Two Bytes of Display Buffer

At acolor depth of 16 bpp the SID13A04 is capable of displaying 64K (65536) colors. The
64K color pixel isdivided into three parts: five bitsfor red, six bitsfor green, and five bits
for blue. In this mode the LUT is bypassed and output goes directly into the Frame Rate
Modulator.

Should monochrome mode be chosen at this color depth, the output sendsthe six bits of the
green LUT component to the modulator for atotal of 64 possible gray shades.

Note
This operation is similar to 8 bpp, but it requires twice as much memory for the display.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development
Vancouver Design Center

Page 17

5 Look-Up Table (LUT)

This section discusses programming the SID13A04 Look-Up Table (LUT). Included isa
summary of the LUT registers, recommendations for color/gray shade LUT values, and
additional programming considerations. For adiscussion of the LUT architecture, refer to
the SLD13A04 Hardware Functional Specification, document number X37A-A-001-xx.

The S1D13A04 isdesigned with a LUT consisting of 256 indexed red/green/blue entries.
Each LUT entry issix bitswide. The color depth (bpp) determines how many indices are
used. For example, 1 bpp uses thefirst 2 indices, 2 bpp usesthefirst 4 indices, 4 bpp uses

thefirst 16 indices and 8 bpp uses all 256 indices. 16 bpp bypassesthe LUT.

In color modes, the pixel values stored in the display buffer index directly to an RGB value
stored in the LUT. In monochrome modes, the pixel value indexesinto the green
component of the LUT and the amount of green at that index controls the intensity.

5.1 Registers

5.1.1 Look-Up Table Write Register

Look-Up Table Write Register
REG[18h] Default = 00000000h Write Only
LUT Write Address LUT Red Write Data n/a
31 | 30 | 20 | 28 | 27 | 26 25 | 24 23 | 22 | 21 ] 20 | 19 | 18 17 | 16
LUT Green Write Data n/a LUT Blue Write Data n/a
15 | 14 | 13 | 12 | 112 | 10 9 | s 7 | e | 5 | 4 | 3 | 2 1 | o

This register receives the data to be written to the red (bits 23-18), green (bits 15-10), and
blue (bits 7-2) components of the Look-Up Table (LUT). Also contained in thisregister is
the LUT Write Address (bits 31-24) which formsapointer to thelocationinthe LUT where
the RGB components will be written.

Thisregister should be accessed using a 32-bit write cycleto ensure proper operation. If the
Look-Up Table Write Register is accessed with 8 or 16-bit write, it isimportant to under-
stand that the LUT dataislatched into the LUT only after the completion of thewriteto the
LUT Write Address bits. On little endian systems, this means awriteto bits 31-24. On big

endian systems, this means a write to bits 7-2.

Thisisawrite-only register and returns 00h if read.

Note

For further information on the SID13A04 LUT architecture, see the SID13A04 Hard-

ware Functional Specification, document number X37A-A-001-xx.

Programming Notes and Examples
Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 18 Epson Research and Development
Vancouver Design Center

5.1.2 Look-Up Table Read Registers

Look-Up Table Read Register
REG[1Ch] Default = 00000000h Write Only (bits 31-24)/Read Only
LUT Read Address (write only) LUT Red Read Data n/a
31 | 30 | 20 | 28 | 27 | 26 25 | 24 23 | 22 | 21 | 20 | 19 | 18 17 | 16
LUT Green Read Data n/a LUT Blue Read Data n/a
15 | 14 | 13 | 12 | 11 | 10 9 | s 7 | e | s | a | 3 | 2 1 | o

Thisregister contains the data returned from the red (bits 23-18), green (bits 15-10), and
blue (bits 7-2) components of the Look-Up Table (LUT). Also contained in thisregister is
the LUT Read Address (bits 31-24) which formsapointer to thelocationinthe LUT where
the RGB components are read from.

Reading the LUT isatwo step process. First the desired index must be set by writing the
LUT Read Address bits with the desired index. Second, the LUT values are retrieved by
reading from the Look-Up Table Read Register.

Bits 31-24 are write only and will return Q0h if read.

Note
For further information on the SID13A04 LUT architecture, see the SID13A04 Hard-

ware Functional Specification, document number X37A-A-001-xXx.

5.2 Look-Up Table Organization

* The Look-Up Table treats the value of apixel asan index into an array. For example, a
pixel value of zero would point to the first LUT entry, whereas a pixel value of seven
would point to the eighth LUT entry.

» The value contained in each LUT entry represents the intensity of the given color or
gray shade. Thisintensity can range in value from 0 to 3Fh.

e The SID13A04 Look-Up Tableislinear. This meansincreasing the LUT entry number
resultsin abrighter color or gray shade. For example, aLUT entry of FChin thered
bank resultsin bright red output while a LUT entry of 1Ch resultsin dull red.

Table 5-1: Look-Up Table Configurations

Look-Up Table Indices Used Effective Gray
Color Depth
RED GREEN BLUE Shades/Colors
1 bpp gray 2 2 gray shades
2 bpp gray 4 4 gray shades
4 bpp gray 16 16 gray shades
8 bpp gray 64 64 gray shades
16 bpp gray 64 gray shades
1 bpp color 2 2 2 2 colors
2 bpp color 4 4 4 4 colors
4 bpp color 16 16 16 16 colors
8 bpp color 256 256 256 256 colors
16 bpp color 65536 colors
= Indicates the Look-Up Table is not used for that display mode
S1D13A04 Programming Notes and Examples

X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 19
Vancouver Design Center

5.2.1 Gray Shade Modes

Gray shade (monochrome) modes are defined by the Color/Mono Panel Select bit
(REG[OCh] bit 6). When this bit is set to 0, the value output to the panel is derived solely
from the green component of the LUT.

For each gray shade atable of sample LUT valuesis provided. These LUT valuesare a
standardized set of intensities used by the Epson S1ID13A04 utility programs.

Note
These LUT values carry eight bits of significance. The SID13A04 LUT uses only the
six MSB. The 2 LSB are ignored.

1 bpp gray shade

The 1 bpp gray shade mode uses the green component of the first 2 LUT entries. The
remaining indices of the LUT are unused.

Table 5-2: Suggested LUT Values for 1 Bpp Gray Shade

Index Red Green Blue
00 00 00 00
01 00 FF 00
02 00 00 00
00 00 00
FF 00 00 00

\:’ Unused entries

2 bpp gray shade

The 2 bpp gray shade mode uses the green component of thefirst 4 LUT entries. The
remaining indices of the LUT are unused.

Table 5-3: Suggested LUT Values for 4 Bpp Gray Shade

Index Red Green Blue
00 00 00 00
01 00 55 00
02 00 AA 00
03 00 FF 00
04 00 00 00
00 00 00
FF 00 00 00

: Unused entries

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 20

Epson Research and Development
Vancouver Design Center

4 bpp gray shade

The 4 bpp gray shade mode uses the green component of the first 16 LUT entries. The
remaining indices of the LUT are unused.

Table 5-4: Suggested LUT Values for 4 Bpp Gray Shade

Index Red Green Blue
00 00 00 00
01 00 10 00
02 00 20 00
03 00 34 00
04 00 44 00
05 00 54 00
06 00 68 00
07 00 78 00
08 00 88 00
09 00 9C 00
OA 00 AC 00
0B 00 BC 00
oC 00 CcC 00
0D 00 DC 00
OE 00 EC 00
OF 00 FC 00
10 00 00 00
00 00 00
FF 00 00 00

L]

Unused entries

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development

Vancouver Design Center

Page 21

8 bpp gray shade

When configured for 8 bpp gray shade maode, the green component of all 256 LUT entries
may be used. However, thisresultsin redundant values where each of the 256 pixel values
can only be mapped into 1 of 64 gray shades.

Table 5-5: Suggested LUT Values for 8 Bpp Gray Shade

Index Red Green Blue Index Red Green Blue
00 00 00 00 20 00 80 00
01 00 04 00 21 00 84 00
02 00 08 00 22 00 88 00
03 00 0oC 00 23 00 8C 00
04 00 10 00 24 00 90 00
05 00 14 00 25 00 94 00
06 00 18 00 26 00 98 00
07 00 1C 00 27 00 9C 00
08 00 20 00 28 00 AO 00
09 00 24 00 29 00 A4 00
0A 00 28 00 2A 00 A8 00
0B 00 2C 00 2B 00 AC 00
oC 00 30 00 2C 00 BO 00
oD 00 34 00 2D 00 B4 00
OE 00 38 00 2E 00 B8 00
OF 00 3C 00 2F 00 BC 00
10 00 40 00 30 00 Co 00
11 00 44 00 31 00 C4 00
12 00 48 00 32 00 Ccs8 00
13 00 4C 00 33 00 CcC 00
14 00 50 00 34 00 DO 00
15 00 54 00 35 00 D4 00
16 00 58 00 36 00 D8 00
17 00 5C 00 37 00 DC 00
18 00 60 00 38 00 EO 00
19 00 64 00 39 00 E4 00
1A 00 68 00 3A 00 E8 00
1B 00 6C 00 3B 00 EC 00
1C 00 70 00 3C 00 FO 00
1D 00 74 00 3D 00 F4 00
1E 00 78 00 3E 00 F8 00
1F 00 7C 00 3F 00 FC 00

40 00 00 00
00 00 00
FF 00 00 00

|:| Unused entries

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 22

Epson Research and Development
Vancouver Design Center

16 bpp gray shade

The Look-Up Tableis bypassed at this color depth, therefore programming the LUT is not
required.

Aswith 8 bpp there are limitations to the colors which can be displayed. In this mode the
six bits of green are used to set the absolute intensity of the image. Thisresultsin 64 gray
shades.

5.2.2 Color Modes

In color display modes, the number of LUT entries used is determined by the color depth.
For each color depth atable of sample LUT valuesisprovided. These LUT valuesarea
standardized set of colors used by the Epson S1ID13A04 utility programs.

Note
These LUT values carry eight bits of significance. The SID13A04 LUT uses only the
six MSB. The 2 LSB areignored.

1 bpp color

When the S1ID13A04 is configured for 1 bpp color mode the first 2 entriesinthe LUT are
used. The remaining indices of the LUT are unused.

Table 5-6: Suggested LUT Values for 1 bpp Color

Index Red Green Blue

00 00 00 00

01 FF FF FF

02 00 00 00

00 00 00

FF 00 00 00
:: Indicates unused entries in the LUT

2 bpp color

When the S1ID13A04 is configured for 2 bpp color mode the first 4 entriesinthe LUT are
used. The remaining indices of the LUT are unused.

Table 5-7: Suggested LUT Values for 2 bpp Color

Index Red Green Blue
00 00 00 00
01 00 00 FF
02 FF 00 00
03 FF FF FF
04 00 00 00
00 00 00
FF 00 00 00

I:|= Indicates unused entries in the LUT

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 23

Vancouver Design Center

4 bpp color

When the SID13A04 is configured for 4 bpp color mode thefirst 16 entriesinthe LUT are
used. The remaining indices of the LUT are unused.

Thefollowing table shows LUT valuesthat simulate those of aVGA operating in 16 color
mode.

Table 5-8: Suggested LUT Values for 4 bpp Color

Index Red Green Blue
00 00 00 00
01 00 00 AA
02 00 AA 00
03 00 AA AA
04 AA 00 00
05 AA 00 AA
06 AA AA 00
07 AA AA AA
08 00 00 00
09 00 00 FF
0A 00 FF 00
0B 00 FF FF
oC FF 00 00
oD FF 00 FF
OE FF FF 00
OF FF FF FF
10 00 00 00

00 00 00
FF 00 00 00

l:lz Indicates unused entries in the LUT

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 24

Epson Research and Development
Vancouver Design Center

8 bpp color

When the S1ID13A04 is configured for 8 bpp color mode all 256 entriesinthe LUT are

used.

The SID13A04 LUT has six bits (64 intensities) of intensity control per primary color
which isthe same as a standard VGA RAMDAC.

The following table shows LUT values that simulate the VGA default color palette.

Table 5-9: Suggested LUT Values 8 bpp Color

Index R G B Index R G B Index R G B Index R G B
00 00 00 00 40 00 00 00 80 FF FF 00 Co 00 00 00
01 00 00 AA 41 00 00 11 81 FF EF 00 C1l 00 11 11
02 00 AA 00 42 00 00 22 82 FF DE 00 Cc2 00 22 22
03 00 AA AA 43 00 00 33 83 FF CD 00 C3 00 33 33
04 AA 00 00 44 00 00 44 84 FF BC 00 C4 00 44 44
05 AA 00 AA 45 00 00 55 85 FF AB 00 C5 00 55 55
06 AA AA 00 46 00 00 66 86 FF 9A 00 C6 00 66 66
07 AA AA AA 47 00 00 77 87 FF 89 00 Cc7 00 77 77
08 55 55 55 48 00 00 89 88 FF 77 00 C8 00 89 89
09 00 00 FF 49 00 00 9A 89 FF 66 00 C9 00 9A 9A
OA 00 FF 00 4A 00 00 AB 8A FF 55 00 CA 00 AB AB
0B 00 FF FF 4B 00 00 BC 8B FF 44 00 CB 00 BC BC
ocC FF 00 00 4C 00 00 CD 8C FF 33 00 cC 00 CD CD
0D FF 00 FF 4D 00 00 DE 8D FF 22 00 CD 00 DE DE
OE FF FF 00 4E 00 00 EF 8E FF 11 00 CE 00 EF EF
OF FF FF FF 4F 00 00 FF 8F FF 00 00 CF 00 FF FF
10 00 00 00 50 00 00 FF 90 FF 00 00 DO FF 00 00
11 11 11 11 51 00 11 FF 91 FF 00 11 D1 FF 11 11
12 22 22 22 52 00 22 FF 92 FF 00 22 D2 FF 22 22
13 33 33 33 53 00 33 FF 93 FF 00 33 D3 FF 33 33
14 44 44 44 54 00 44 FF 94 FF 00 44 D4 FF 44 44
15 55 55 55 55 00 55 FF 95 FF 00 55 D5 FF 55 55
16 66 66 66 56 00 66 FF 96 FF 00 66 D6 FF 66 66
17 77 77 77 57 00 77 FF 97 FF 00 77 D7 FF 77 77
18 89 89 89 58 00 89 FF 98 FF 00 89 D8 FF 89 89
19 9A 9A 9A 59 00 9A FF 99 FF 00 9A D9 FF 9A 9A
1A AB AB AB 5A 00 AB FF 9A FF 00 AB DA FF AB AB
1B BC BC BC 5B 00 BC FF 9B FF 00 BC DB FF BC BC
1C CD CD CD 5C 00 CD FF 9C FF 00 CD DC FF CD CD
1D DE DE DE 5D 00 DE FF aD FF 00 DE DD FF DE DE
1E EF EF EF 5E 00 EF FF 9E FF 00 EF DE FF EF EF
1F FF FF FF 5F 00 FF FF 9F FF 00 FF DF FF FF FF
20 00 00 00 60 00 FF FF A0 FF 00 FF EO 00 FF 00
21 11 00 00 61 00 FF EF Al EF 00 FF El 11 FF 11
22 22 00 00 62 00 FF DE A2 DE 00 FF E2 22 FF 22
23 33 00 00 63 00 FF CD A3 CD 00 FF E3 33 FF 33

S1D13A04 Programming Notes and Examples

X37A-G-003-05

Issue Date: 2002/08/21




Epson Research and Development Page 25
Vancouver Design Center
Table 5-9: Suggested LUT Values 8 bpp Color (Continued)

Index| R G B Index| R G B Index| R G B Index| R G B
24 44 00 00 64 00 FF BC A4 BC 00 FF E4 44 FF 44
25 55 00 00 65 00 FF AB A5 AB 00 FF ES5 55 FF 55
26 66 00 00 66 00 FF 9A A6 9A 00 FF E6 66 FF 66
27 1 00 00 67 00 FF 89 A7 89 00 FF E7 i FF 7
28 89 00 00 68 00 FF 77 A8 77 00 FF E8 89 FF 89
29 9A 00 00 69 00 FF 66 A9 66 00 FF E9 9A FF 9A
2A AB 00 00 6A 00 FF 55 AA 55 00 FF EA AB FF AB
2B BC 00 00 6B 00 FF 44 AB 44 00 FF EB BC FF BC
2C CD 00 00 6C 00 FF 33 AC 33 00 FF EC CD FF CD
2D DE 00 00 6D 00 FF 22 AD 22 00 FF ED DE FF DE
2E EF 00 00 6E 00 FF 11 AE 11 00 FF EE EF FF EF
2F FF 00 00 6F 00 FF 00 AF 00 00 FF EF FF FF FF
30 00 00 00 70 00 FF 00 BO 00 00 00 FO 00 00 FF
31 00 11 00 71 11 FF 00 B1 11 00 11 F1 11 11 FF
32 00 22 00 72 22 FF 00 B2 22 00 22 F2 22 22 FF
33 00 33 00 73 33 FF 00 B3 33 00 33 F3 33 33 FF
34 00 44 00 74 44 FF 00 B4 44 00 44 F4 44 44 FF
35 00 55 00 75 55 FF 00 B5 55 00 55 F5 55 55 FF
36 00 66 00 76 66 FF 00 B6 66 00 66 F6 66 66 FF
37 00 7 00 77 77 FF 00 B7 77 00 77 F7 77 7 FF
38 00 89 00 78 89 FF 00 B8 89 00 89 F8 89 89 FF
39 00 9A 00 79 9A FF 00 B9 9A 00 9A F9 9A 9A FF
3A 00 AB 00 7A AB FF 00 BA AB 00 AB FA AB AB FF
3B 00 BC 00 7B BC FF 00 BB BC 00 BC FB BC BC FF
3C 00 CD 00 7C CD FF 00 BC CD 00 CD FC CD CD FF
3D 00 DE 00 7D DE FF 00 BD DE 00 DE FD DE DE FF
3E 00 EF 00 7E EF FF 00 BE EF 00 EF FE EF EF FF
3F 00 FF 00 7F FF FF 00 BF FF 00 FF FF FF FF FF

16 bpp color
The Look-Up Tableisbypassed at this color depth, therefore programming the LUT is not
required.

Programming Notes and Examples
Issue Date: 2002/08/21

S1D13A04

X37A-G-003-05



Page 26

Epson Research and Development
Vancouver Design Center

6 Power Save Mode

6.1 Overview

The S1ID13A04 isdesigned for very low-power applications. During normal operation, the
internal clocks are dynamically disabled when not required. The SID13A04 design also
includes a Power Save Mode to further save power. When Power Save Mode isinitiated,
L CD power sequencing is required to ensure the LCD bias power supply is disabled
properly. For further information on LCD power sequencing, see Section 6.3, “LCD Power
Sequencing” on page 28.

For Power Save Mode AC Timing, seethe SLD13A04 Hardware Functional Specification,
document number X37A-A-001-xx.

The S1D13A04 includes a software initiated Power Save Mode. Enabling/disabling Power
Save Modeis controlled using the Power Save Mode Enable bit (REG[14h] bit 4).

While Power Save Mode is enabled the following conditions apply.

» Registers are accessible (USB registers are not accessible)

« Memory writes are possible!

* Memory reads are not possible

» LCD display isinactive.

» LCD interface outputs are forced low.

Note
1 Memory writes are possible during power save mode because the S1ID13A04 dynami-

cally enables the memory controller for display buffer writes.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development

Page 27
Vancouver Design Center
6.2 Registers
6.2.1 Power Save Mode Enable
Power Save Configuration Register
REG[14h] Default = 00000010h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 | 25 24 23 22 21 20 19 18 | 17 16
VNDP N*Ijemory Power ‘Direct’
ower Save HR-TFT
n/a Status Save n/a Mode n/a GPO
(RO) S(:gj)s Enable Control
15 14 13 | 12 | 112 | 10 | 9 | s 7 6 5 4 3 | 2 | 1 0

The Power Save Mode Enable bit initiates Power Save M ode when set to 1. Setting the bit
to O disables Power Save Mode and returns the S1D13A 04 to norma mode. At reset this

bitissetto 1.

Note

Enabling/disabling Power Save M ode requires proper LCD Power Sequencing. See Sec-
tion 6.3, “LCD Power Sequencing” on page 28.

6.2.2 Memory Controller Power Save Status

Power Save Configuration Register
REG[14h] Default = 00000010h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 | 25 24 23 22 21 20 19 18 | 17 16
Memory (Mirantt
Power Direct’
VNDP | Power Save HR-TFT
n/a Status Save n/a n/a
Mode GPO
(RO) Status Enable Control
(RO)
15 14 13 | 12 ] 11 | 10 | 9 | s 7 6 5 4 3 | 2 | 1 0

The Memory Controller Power Save Status bit is aread-only status bit which indicates the
power save state of the SID13A04 SRAM interface. When this bit returns a 1, the SRAM
interface is powered down and the memory clock source may be disabled. When this bit
returns a0, the SRAM interface is active. This bit returns a0 after achip reset.

Note

Memory writes are possible during power save mode because the S1D13A04 dynami-

cally enables the memory controller for display buffer writes.

Programming Notes and Examples
Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 28 Epson Research and Development
Vancouver Design Center

6.3 LCD Power Sequencing

The S1D13A04 requires LCD power sequencing (the process of powering-on and
powering-off the LCD panel). LCD power sequencing alowsthe LCD bias voltage to
discharge prior to shutting down the LCD signals, preventing long term damageto the panel
and avoiding unsightly “lines’ at power-on/power-off.

Proper LCD power sequencing for power-off requires adelay fromthetimethe LCD power
is disabled to the time the LCD signals are shut down. Power-on requiresthe LCD signals
to be active prior to applying power to the LCD. Thistime interval depends on the LCD
bias power supply design. For example, the LCD bias power supply on the
S5U13A04B00C Evaluation Board requires 0.5 seconds to fully discharge. Other power
supply designs may vary.

This section assumes the LCD bias power is controlled through GPIOO0. The S1ID13A04
GPIO pins are multi-use pins and may not be availablein al system designs. For further
information on the availability of GPIO pins, see the S1ID13A04 Hardware Functional
Soecification, document number X37A-A-001-xX.

Note
This section discusses LCD power sequencing for passive and TFT (non-HR-TFT) pan-
elsonly. For further information on LCD power sequencing the HR-TFT, see Connect-
ing to the Sharp HR-TFT Panels, document number X37A-G-011-xX.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 29
Vancouver Design Center

6.4 Enabling Power Save Mode

Power Save Mode must be enabled using the following steps.
1. Turn off the LCD bias power.

Note
The S5U13A04B00C uses GPIOO0 to control the LCD bias power supplies. Y our system
design may vary.

2. Wait for the LCD bias power supply to discharge. The discharge time is based on the
discharge rate of the power supply.

3. Enable Power Save Mode - set REG[14h] bit 4to 1.

The SID13A04 isnow in Power Save Mode. To further increase power savings PCLK and
MCLK can be switched off (see steps 4 and 5).

4. Atthistime, the LCD pixel clock source may be disabled.

5. After the Memory Controller Power Save Status bit (REG[14h] bit 6)
returns a 1, the Memory Clock source may be shut down.

6.5 Disabling Power Save Mode

Bring the SID13A04 out of Power Save Mode using the following steps.

=

If the Memory Clock source is shut down, it must be started.
If the pixel clock is disabled, it must be started.

Disable Power Save Mode - set REG[14h] bit 4t0 0.

A w0 DN

Wait for the LCD bias power supply to charge. The charge is based on the time re-
quired for the LCD power supply to reach operating voltage.

5. Enablethe LCD bias power.

Note
The S5U13A04B00C uses GPIOO0 to control the LCD bias power supplies. Y our system
design may vary.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 30 Epson Research and Development
Vancouver Design Center

7 SwivelView[]

Most computer displays operate in landscape mode. In landscape mode the display is
typically wider than it is high. For example, a display size of 320x240 is 320 pixels wide
and 240 lines high.

SwivelView rotates the display image counter-clockwise in ninety degree increments.
Rotating the image on a 320x240 display by 90 or 270 degrees yields a display that is now
240 pixels wide and 320 lines high.

The S1D13A 04 provides hardware support for SwivelView in al color depths (1, 2, 4, 8
and 16 bpp).

For further details on the SwivelView feature, see the SID13A04 Hardware Functional
Soecification, document number X37A-A-001-xX.

7.1 SwivelView Registers

These are the registers which control the SwivelView feature.

Display Settings Register
REG[10h] Default = 00000000h Read/Write
Pixel Pixel +
) I SwW PIP o
. . Display | Dithering - ! SwivelView Mode
n/a Doubling | Doubling Blank | Disable nla Ylde? VI\E/mdb?W n/a Select
Vertical Horiz. nver nabie
31 | 30 | 20 | 28 | 27 | 26 25 24 23 22 21 20 19 18 17 | 1e
B Bits-per-pixel Select
(actual value: 1, 2, 4, 8 or 16 bpp)
5 | 14 | 13 | 122 | 112 | 0| 9o | 8 | 7 | & | s 4 | 3 | 2 | 1 | o

SwivelView Mode Select
The SwivelView modes are selected using the Swivel View Mode Select Bitg[1:0] (bits 17-
16). The combinations of these bits provide the following rotations.

Table 7-1: Swivel View Mode Select Bits

SwivelView Mode | SwivelView Mode SwivelView
Select Bit 1 Select Bit 0 Orientation
0 0 0° (normal)
0 1 90°
1 0 180°
1 1 270°
S1D13A04 Programming Notes and Examples

X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 31
Vancouver Design Center

Main Window Display Start Address Register

REG[40h] Default = 00000000h Read/Write
n/a bit 16
31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 16
Main Window Display Start Address bits 15-0
15 | 14 | 13 | 12 | 12 | 10 | 9o | 8 | 7 | & | 5 | a4 | 3 | 2 | 1 | o

Main Window Display Start Address
The Main Window Display Start Address register represents a DWORD address which
points to the start of the main window image in the display buffer. An address of 0 isthe
start of the display buffer. For the following Swivel View mode descriptions, the desired
byte address is the starting display address for the main window image.

In SwivelView 0°, program the start address
= desired byte address + 4

In SwiveView 90°, program the start address
= ((desired byte address + (panel height x bpp =+ 8)
+ ((4 - (panel height x bpp + 8)) & 03h)) +4) - 1

In SwivelView 180°, program the start address
= ((desired byte address + (Main Window Stride x (panel height — 1))
+ (panel width x bpp + 8) + ((4 - (panel width x bpp + 8)) & 03h)) +4) - 1

In SwivelView 270°, program the start address
= (desired byte address + ((panel width - 1) x Main Window Stride)) + 4

Note
Truncate all fractional values before writing to the address registers.

Note
SwivelView 0° and 180° require the panel width to be a multiple of 32 + bits-per-pixel.
SwivelView 90° and 270° require the panel height to be a multiple of 32 + bits-per-pix-
d. If thisis not possible, refer to Section 7.3, “Limitations” .

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 32

Epson Research and Development
Vancouver Design Center

Main Window Line Address Offset Register
REG[44h] Default = 00000000h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
n/a Main Window Line Address Offset bits 9-0
15 | 14 | 13 | 12 | 112 | 10 o | 8 | 7 | 6 | 5 | a4 | 3 | 2 | 1 | o

Main Window Line Address Offset

7.2 Examples

The Main Window Line Address Offset register indicates the number of dwords per linein
the main window image.

For SwivelView 0° and 180°, the image width must be at |east the panel width. For
SwivelView 90° and 270°, the image width must be at least the panel height. In addition,
the image width must be a multiple of 32 + bpp. If the image width is not such amultiple,
adlightly larger width must be chosen (see Section 7.3, “Limitations’ ).

Panel width and panel height refer to the physical panel dimensionsin pixels. Srideisthe
number of bytes required for one line of the image; the offset register represents the stride
in DWORD steps.

Main Window Stride = image width x bpp + 8

Note
Image width can be larger than panel width (or panel height, for SwivelView 90° or
270°).

number of dwords per line = image width + (32 + bpp)

Example 1:In SwivelView 0° (normal) mode, program the main window registers for
a 320x240 panel at a color depth of 4 bpp.

1. Determine the main window display start address.
The main window istypically placed at the start of display memory which isat display
address 0.

main window display start address register
= desired byte address + 4
=0

Program the Main Window Display Start Address register. REG[40h] is set to
00000000h.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21




Epson Research and Development Page 33
Vancouver Design Center

2. Determine the main window line address offset.

number of dwords per line
= image width + (32 + bpp)
=320+ (32+4)
=40
=28h

Program the Main Window Line Address Offset register. REG[44h] is set to
00000028h.

Example 2: In SwivelView 90° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Determine the main window display start address.
The main window is typically placed at the start of display memory, whichisat dis-
play address 0.

main window display start address register
= ((desired byte address + (panel height x bpp + 8)

+ ((4 - (panel height x bpp + 8)) & 03h)) +4) - 1
=((0+(240x 4 +8) +((4-(240x 4 +8)) & 03h)) + 4) -1
=29
=1Dh

Program the Main Window Display Start Address register. REG[40h] is set to
0000001Dh.

2. Determine the main window line address of fset.

number of dwords per line
= image width + (32 + bpp)
=240+ (32 + 4)
=30
=1Eh

Program the Main Window Line Address Offset register. REG[44h] is set to
0000001Eh.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 34 Epson Research and Development
Vancouver Design Center

Example 3: In SwivelView 180° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Determine the main window display start address.
The main window istypically placed at the start of display memory whichisat display
address 0.

Main Window Stride
= image width x bpp + 8
=320%x4+8
=160
= AOh

main window display start address register
= ((desired byte address + (Main Window Stride x (panel height — 1))
+ (panel width x bpp + 8) + ((4 - (pand width x bpp + 8)) & 03h)) ~4) - 1
=((0+(160 % (240 - 1)) + (320 4+ 8) + ((4- (320x 4+ 8))& 03h)) + 4) - 1
= 9599
=257Fh

Program the Main Window Display Start Address register. REG[40h] is set to
0000257Fh.

2. Determine the main window line address offset.

number of dwords per line
= image width + (32 + bpp)

=320+ (32+4)
=40
=28h
Program the Main Window Line Address Offset register. REG[44h] is set to
00000028h.
S1D13A04 Programming Notes and Examples

X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 35
Vancouver Design Center

Example 4: In SwivelView 270° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Determine the main window display start address.
The main window is typically placed at the start of display memory, whichisat dis-
play address 0.

Main Window Stride
= image width x bpp + 8
=240x4+8
=120
=78h

main window display start address register
= (desired byte address + ((panel width - 1) x Main Window Stride)) + 4
=(0+((320-1) x120)) + 4
= 9570
= 2562h

Program the Main Window Display Start Address register. REG[40h] is set to
00002562h.

2. Determine the main window line address offset.

number of dwords per line
= image width + (32 + bpp)
=240+ (32 + 4)
=30
=1Eh

Program the Main Window Line Address Offset register. REG[44h] is set to
0000001Eh.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 36

Epson Research and Development
Vancouver Design Center

7.3 Limitations

7.3.1 SwivelView 0° and 180°

In SwivelView 0° and 180°, the Main Window Line Address Offset register (REG[44h])
reguires the panel width to be a multiple of 32 + bits-per-pixel. If thisis not the case, then
the Main Window Line Address Offset register must be programmed to alonger linewhich
meets this requirement. Thislonger line creates a virtual image where the width ismain
window line address offset register x 32 + bits-per-pixel. In SwivelView 0°, thisvirtual
image should be drawn in display memory as left justified, and in SwivelView 180°, this
virtual image should be drawn in display memory asright justified. A left-justified image
isonedrawn in display memory such that each of the image’ slines only use the left most
portion of thelinewidth defined by theline address offset register (i.e. starting at horizontal
position 0). A right-justified image is one drawn in display memory such that each of the
image’ s lines only use the right most portion of the line width defined by the line address
offset register (i.e. starting at a non-zero horizontal position which is the virtual width -
image width).

7.3.2 SwivelView 90° and 270°

In SwivelView 90° and 270°, the Main Window Line Address Offset register (REG[44h])
requires the panel height to be amultiple of 32 + bits-per-pixel. If thisis not the case, then
the Main Window Line Address Offset register must be programmed to alonger linewhich
meets this requirement. Thislonger line creates a virtual image whose width is main
window line address offset register x 32 + bits-per-pixel. In SwivelView 270°, this virtual
image should be drawn in display memory as left justified, and in SwivelView 90°, this
virtual image should be drawn in display memory asright justified. A left-justified image
isonedrawn in display memory such that each of the image’ slines only use the left most
portion of thelinewidth defined by theline address offset register (i.e. starting at horizontal
position 0). A right-justified image is one drawn in display memory such that each of the
image’ s lines only use the right most portion of the line width defined by the line address
offset register (i.e. starting at a non-zero horizontal position which is the virtual width -
image width).

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 37

Vancouver Design Center

8 Picture-In-Picture Plus

Picture-in-Picture Plus (PIP") enables a secondary window (or PIP™ window) within the
main display window. The PIP™ window may be positioned anywhere within the virtual
display and is controlled through the PIP* Window control registers (REG[50h] through
REG[5Ch]). The PIP" window retains the same color depth and SwivelView orientation as
the main window.

A PIP" window can be used to display temporary items such as adialog box or to “float”
the display item so that the system doesn’t have to exclude the area during screen repaints.

The following diagram shows an example of a PIP* window within amain window.

0° SwivelView

main-window

PIP* window

Figure 8-1: Picture-in-Picture Plus with SwivelView disabled

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 38

Epson Research and Development
Vancouver Design Center

8.1 Registers

The following registers control the Picture-In-Picture Plus feature.

Display Settings Register
REG[10h] Default = 00000000h Read/Write
Pixel Pixel +
) . sw PIP o
. . Display | Dithering - ) SwivelView Mode
n/a Doubling | Doubling [ "5 20" | Disable nla Yldec: VI\EllndbcTW n/a Select
Vertical Horiz. nver nable
31 | 30 | 20 | 28 | 27 | 26 25 24 23 22 21 20 19 18 17 | 1e
B Bits-per-pixel Select
(actual value: 1, 2, 4, 8 or 16 bpp)
5 | 14 | 13 | 122 | 12 | 0] 9 | 8 | 7 | & | s 4 | 3 | 2 | 1 | o

PIP* Window Enable
The PIP" Window Enable bit enables a PIP™ window within the main window. The loca-
tion of the PIP* window within the landscape window is determined by the PIP* X Posi-
tion register (REG[58h]) and PIP* Y Position register (REG[5Ch]). The PIP* window has
itsown Display Start Address register (REG[50h]) and Line Address Offset register
(REG[54h]). The PIP* window shares the same col or depth and Swivel View™ orientation
as the main window.

PIP* Display Start Address Register
REG[50h] Default = 00000000h Read/Write
n/a bit 16
31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 16
PIP* Display Start Address bits 15-0
15 | 14 | 13 | 12 | 12 | 10 | 9o | 8 | 7 | & | 5 | a4 | 3 | 2 | 1 ] o
PIP* Display Start Address
The PIP" Display Start Address register is a DWORD which represents an address that
points to the start of the PIP* window image in the display buffer. An address of 0 is the
start of the display buffer. For the following PIP" descriptions, the desired byte address is
the starting display address for the PIP™ window image.
In SwivelView 0°, program the start address
= desired byte address + 4
In SwivelView 90°, program the start address
= ((desired byte address + (PIP* width x bpp + 8)
+ ((4 - (PIP* width x bpp + 8)) & 03h)) + 4) - 1
In SwivelView 180°, program the start address
= ((desired byte address + (PIP" Stride x (PIP™ height — 1))
+ (PIP* width x bpp + 8) + ((4 - (PIP" width x bpp + 8)) & 03h)) + 4) - 1
In SwivelView 270°, program the start address
= (desired byte address + ((PIP* height - 1) x PIP* Stride)) + 4
S1D13A04

Programming Notes and Examples

X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 39
Vancouver Design Center

Note
Truncate all fractional values before writing to the address registers.

Note
SwivelView 0° and 180° require the PIP™ width to be amultiple of 32 + bits-per-pixel.
SwivelView 90° and 270° require the PIP* height to be amultiple of 32 + bits-per-pixel.
If thisis not possible, refer to Section 8.3, “Limitations” .

PIP* Line Address Offset Register
REG[54h] Default = 00000000h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
n/a PIP* Line Address Offset bits 9-0
15 | 14 | 13 | 12 | 11 | 10 o | s | 7 | 6 | 5 | a4 | 3 | 2 | 1 | o

PIP" Line Address Offset
The PIP* Line Address Offset register indicates the number of dwords per linein the PIP*
window image.

The image width must be amultiple of 32 + bpp. If the image width is not such amultiple,
adightly larger width must be chosen (see Section 8.3, “Limitations’ ).

PIP* width and PIP* height refer to the PIP™ dimensions as seen in SwivelView 0°
(landscape mode). Stride is the number of bytes required for one line of the image; the
offset register represents the stride in DWORD steps.
PIP* Stride = image width x bpp + 8
For SwivelView 0° and 180°,
PIP* Width=((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1) x (32 + bpp)
PIP* Height=(REG[5CHh] bits 25:16) - (REG[5Ch] bits 9:0) + 1
For SwivelView 90° and 270°,
PIP* Width=((REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1) x (32 + bpp)
PIP* Height=(REG[58h] hits 25:16) - (REG[58h] bits 9:0) + 1
Note
Image width can be larger than PIP* width (or PIP* height, for SwivelView 90° or
270°).

number of dwords per line = image width + (32 + bpp)

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 40

Epson Research and Development
Vancouver Design Center

PIP* X Positions Register
REG[58h] Default = 00000000h Read/Write
n/a PIP* X End Position bits 9-0
31 | 30 | 20 | 28 | 27 | 26 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
n/a PIP* X Start Position bits 9-0
15 | 14 | 13 | 12 | 112 | 10 o | 8 | 7 | 6 | 5 | a4 | 3 | 2 | 1 | o

PIP* X End Position

The PIP* X End Position bits determine the horizontal end of the PIP* window in 0° and
180° SwivelView orientations. These bits determine the vertical end position in 90° and
270° SwivelView. For further information on defining the value of the X End Position, see
Section 8.2, “Picture-In-Picture-Plus Examples’ on page 45.

Thisregister also increments differently based on the SwivelView orientation. For 0° and
180° SwivelView the X End Position isincremented by X pixelswhere X isrelative to the
current color depth. For 90° and 270° SwivelView the X End Positionisincrementedin 1
line increments.

Table 8-1: 32-hit Address Increments for PIP* X Position in Swivel View 0° and 180°

Bits-Per-Pixel (Color Depth) Pixel Increment (X)
1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4
16 bpp 2

In SwivelView 0°, these bits set the horizontal coordinates (x) of the PIP* window’ sright
edge. Increasing x movestheright edge towardstheright in steps of 32 + bits-per-pixel (see
Table 8-1: ). The horizontal coordinates start at pixel 0.

Program the PIP* Window X End Position so that
PIP* Window X End Position = x + (32 + bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 90°, these bits set the vertical coordinates (y) of the PIP™ window’ s bottom
edge. Increasing y moves the bottom edge downward in 1 line steps. The vertical coordi-
nates start at line O.

Program the PIP* Window X End Position so that
PIP* Window X End Position =y

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 41

Vancouver Design Center

PIP* X Start Position

I'n SwivelView 180°, these bits set the horizontal coordinates (x) of the PIP™ window’ s|eft
edge. Increasing x moves the | eft edge towards the right in steps of 32 + bits-per-pixel (see
Table 8-1: ). The horizontal coordinates start at pixel 0.

Program the PIP* Window X End Position so that
PIP* Window X End Position = (panel width - x - 1) + (32 + bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 270°, these bits set the vertical coordinates (y) of the PIP* window’ s top
edge. Increasing y movesthe top edge downwardsin 1 line steps. The vertical coordinates
start at line 0.

Program the PIP* Window X End Position so that
PIP* Window X End Position = panel width -y - 1

The PIP* X Start Position bits determine the horizontal position of the start of the PIP*
window in 0° and 180° SwivelView orientations. These bits determine the vertical start
position in 90° and 270° Swivel View. For further information on defining the value of the
X Start Position, see Section 8.2, “ Picture-In-Picture-Plus Examples’ on page 45.

Theregister also increments differently based on the SwivelView orientation. For 0° and
180° SwivelView the X Start Position isincremented by X pixelswhere X isrelativeto the
current color depth. For 90° and 270° SwivelView the X Start Positionisincrementedin 1
line increments.

Table 8-2: 32-bit Address Increments for Color Depth

Bits-per-pixel (Color Depth) Pixel Increment (X)
1 bpp 32
2 bpp 16
4 bpp 8
8 bpp
16 bpp 2

In SwivelView 0°, these bits set the horizontal coordinates (x) of the PIP™ windows's |eft
edge. Increasing x movestheleft edgetowardstheright in steps of (32 + bits-per-pixel) (see
Table 8-2: ). The horizontal coordinates start at pixel 0.

Program the PIP* Window X Start Position so that
PIP* Window X Start Position = x + (32 + bits-per-pixel)

Note
Truncate the fractional part of the above equation.

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 42

Epson Research and Development
Vancouver Design Center

In SwivelView 90°, these bits set the vertical coordinates (y) of the PIP* window’s top
edge. Increasing y moves the top edge downward in 1 line steps. The vertical coordinates
start at line 0.

Program the PIP* Window X Start Position so that
PIP* Window X Start Position =y

In SwivelView 180°, these bits set the horizontal coordinates (x) of the PIP* window’s
right edge. Increasing x moves the right edge towards the right in steps of (32 + bits-per-
pixel) (see Table 8-2: ). The horizontal coordinates start at pixel 0.

Program the PIP* Window X Start Position so that
PIP* Window X Start Position = (panel width - x - 1) + (32 + bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 270°, these bits set the vertical coordinates (y) of the PIP™ window’ sbottom
edge. Increasing y moves the bottom edge downwardsin 1 line steps. The vertica coordi-
nates start at line 0.

Program the PIP* Window X Start Position so that
PIP* Window X Start Position = panel width-y - 1

PIP* Y Positions Register
REG[5Ch] Default = 00000000h Read/Write
n/a PIP* Y End Position bits 9-0
31 | 30 | 20 | 28 | 27 | 26 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
nla PIP* Y Start Position bits 9-0
15 | 14 | 13 | 12 | 11 | 10 o | 8 | 7 | 6 | 5 | a4 | 3 | 2 | 1 ] o

PIP* Y End Position

The PIP* Y End Position bits determine the vertical end position of the PIP+ window in 0°
and 180° SwivelView orientations. These bits determine the horizontal end position in 90°
and 270° SwivelView. For further information on defining the value of the Y End Position,
see Section 8.2, “Picture-In-Picture-Plus Examples’ on page 45.

Theregister aso increments differently based on the SwivelView orientation. For 0° and
180° SwivelView the Y End Position isincremented in 1 lineincrements. For 90° and 270°
SwivelView theY End Position isincremented by Y pixelswhere Y isrelativeto the current
color depth.

Table 8-3: 32-bit Address Increments for Color Depth

Bits-Per-Pixel (Color Depth) Pixel Increment (Y)
1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4
16 bpp 2

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 43

Vancouver Design Center

I'n SwivelView 0°, these bits set the vertical coordinates (y) of the PIP* windows' s bottom
edge. Increasing y moves the bottom edge downwardsin 1 line steps. The vertical coordi-
nates start at line O.

Program the PIP* Window Y End Position so that
PIP* Window Y End Position =y

In SwivelView 90°, these bits set the horizontal coordinates (x) of the PIP* window’s | eft
edge. Increasing x movestheleft edgetowardstheright in steps of (32 + bits-per-pixel) (see
Table 8-3: ). The horizontal coordinates start at pixel 0.

Program the PIP* Window Y End Position so that
PIP* Window Y End Position = (panel height - x - 1) + (32 + bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 180°, these bits set the vertical coordinates (y) of the PIP* window’ s top
edge. Increasing y movesthe top edge downwardsin 1 line steps. The vertical coordinates
start at line 0.

Program the PIP* Window Y End Position so that
PIP* Window Y End Position = panel height -y - 1

In SwivelView 270°, these bits set the horizontal coordinates (x) of the PIP* window’s
right edge. Increasing x moves the right edge towards the right in steps of (32 + bits-per-
pixel) (see Table 8-3: ). The horizontal coordinates start at pixel 0.

Program the PIP* Window Y End Position so that
PIP* Window Y End Position = x + (32 + bits-per-pixel)

Note
Truncate the fractiona part of the above equation.

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 44 Epson Research and Development
Vancouver Design Center

PIP* Y Start Position
The PIP* Y Start Position bits determine the vertical start position of the PIP* window in
0° and 180° SwivelView orientations. These bits determine the horizontal start position in
90° and 270° SwivelView. For further information on defining the value of the Y Start
Position, see Section 8.2, “Picture-In-Picture-Plus Examples’ on page 45.

The register also increments differently based on the SwivelView orientation. For 0° and
180° SwivelView the Y Start Position isincremented in 1 lineincrements. For 90° and 270°
SwivelView the Y Start Positionisincremented by Y pixelswhere Yisrdativeto the current
color depth.

Table 8-4. 32-bit Address Increments for Color Depth

Bits-Per-Pixel (Color Depth) Pixel Increment (Y)
1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4
16 bpp 2

In SwivelView 0°, these bits set the vertical coordinates (y) of the PIP* windows's top

edge. Increasing y moves the top edge downwardsin 1 line steps. The vertical coordinates
start at line 0.

Program the PIP* Window Y Start Position so that
PIP" Window Y Start Position =y

In SwivelView 90°, these bits set the horizontal coordinates (x) of the PIP* window’ sright
edge. Increasing x moves the right edge towards the right in steps of (32 + bits-per-pixel)
(see Table 8-4. ). The horizontal coordinates start at pixel 0.

Program the PIP* Window Y Start Position so that
PIP* Window Y Start Position = (panel height - x - 1) + (32 + bits-per-pixel)

Note
Truncate the fractional part of the above equation.

In SwivelView 180°, these bits set the vertical coordinates (y) of the PIP™ window’ sbottom
edge. Increasing y moves the bottom edge downwardsin 1 line steps. The vertica coordi-
nates start at line O.

Program the PIP* Window Y Start Position so that
PIP* Window Y Start Position = panel height -y - 1

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development

Vancouver Design Center

Page 45

I'n SwivelView 270°, these bits set the horizontal coordinates (x) of the PIP™ window’ s|eft
edge. Increasing x movestheleft edgetowardstheright in steps of (32 + bits-per-pixel) (see
Table 8-4: ). The horizontal coordinates start at pixel 0.

Program the PIP* Window Y Start Position so that

PIP* Window Y Start Position = x + (32 + bits-per-pixel)

Note

Truncate the fractional part of the above equation.

8.2 Picture-In-Picture-Plus Examples

8.2.1 SwivelView 0° (Landscape Mode)

0° SwivelView ™

(REG[58h] bits 9-0)

panel’s origin

PIP+ window x start position PIP+ window x end position

PIP+ window y start position
(REG[5Ch] bits 9-0)

PIP+ window y end position
(REGI5Ch] bits 25-16)

main-window
R 4

PIP+ window

»|

(REG[58h] bits 25-16)

Figure 8-2: Picture-in-Picture Plus with SwivelView disabled

SwivelView 0° (or landscape) isamode in which both the main and PIP* window are non-
rotated. The images for each window are typically placed consecutively, with the main
window image starting at address 0 and followed by the PIP* window image. In addition,
both images must start at addresses which are dword-aligned (the last two bits of the
starting address must be 0).

Note
It is possible to use the same image for both the main window and PIP* window. To do

s0, set the PIP* Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h].

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 46 Epson Research and Development
Vancouver Design Center

Example 5: Program the PIP* window registers for a 320x240 panel at 4 bpp, with
the PIP* window positioned at (80, 60) with a width of 160 and a height of
120.

1. Determine the value for the PIP* Window X Positions and PIP™ Window Y Positions
registers. Let the top left corner of the PIP* window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP*
Window X Positions register sets the horizontal coordinates of the PIP* window’s top
left and bottom right corners. The PIP* Window Y Positions register sets the vertical
coordinates of the PIP* window’ s top left and bottom right corners.

The required values are calculated as follows:

X Start Position
=x1+ (32 + bpp)
=80+ (32+4)
=10
=0Ah

Y Start Position
= y]_
=60
=3Ch

X End Position
=x2+ (32 + bpp)
=(80+160- 1)+ (32+4)
=29.875
= 1Dh (truncated fractional part)

Y End Position
= y2
=60+120-1
=179
=B3h

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 47
Vancouver Design Center

2. Program the PIP* Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 001D000A.
Program the PIP* Window Y Positions register with the Y Start Position in bits 9-0
and the Y End Position in bits 25-16. REG[5Ch] is set to 00B3003Ch.

Dueto truncation, the dimensions of the PIP* window may have changed. Recalculate
the PIP* window width and height below:
PIP* Width
= ((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1) x (32 + bpp)
=(1Dh-0Ah+1) x (32 + 4)
=160 pixels

PIP Height
= (REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1
=B3h-3Ch+1
=120 lines

3. Determinethe PIP* display start address.
The main window image must take up 320 x 240 pixels x bpp + 8 = 9600h bytes. If
the main window starts at address Oh, the PIP* window can start at 9600h.

PIP* display start address
= desired byte address + 4
=9600h + 4
= 2580h.

Program the PIP* Display Start Address register. REG[50h] is set to 00002580h.

4. Determinethe PIP" line address offset.

number of dwords per line
= image width + (32 + bpp)
=160+ (32 + 4)
=20
= 14h

Program the PIP* Line Address Offset register. REG[54h] is set to 00000014h.

5. Enable the PIP* window.

Program the PIP* Window Enable bit. REG[10h] bit 19 is set to 1.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 48 Epson Research and Development
Vancouver Design Center

8.2.2 SwivelView 90°

90° SwivelView ™ panel’s origin

| _——PIP+ window x start position
PIP+ window x end position 1 (REG[58h] bits 9-0)

(REG[58h] bits 25-16) \

AV

\ .
PIP+ window ) .
PIP+ window y start position
(REG[5Ch] bits 9-0)
A
|
|‘
\ PIP+ window y end position
L (REGI5Ch] bits 25-16)
main-window

Figure 8-3: Picture-in-Picture Plus with Swivel View 90° enabled

SwivelView 90° is amode in which both the main and PIP* windows are rotated 90°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by
the PIP" window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note
It is possible to use the same image for both the main window and PIP* window. To do

S0, set the PIP* Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h]).

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 49
Vancouver Design Center

Example 6: In SwivelView 90°, program the PIP* window registers for a 320x240
panel at 4 bpp, with the PIP* window positioned at SwivelView 90° coor-
dinates (60, 80) with a width of 120 and a height of 160.

1. Determine the value for the PIP* Window X Positions and PIP" Window Y Positions
registers. Let the top left corner of the PIP* window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP*
Window X Positions register sets the vertical coordinates of the PIP* window’s top
right and bottom left corners. The PIP* Window Y Positions register sets the horizon-
tal coordinates of the PIP™ window’s top right and bottom left corners.

The required values are calculated as follows:

X Start Position
= y]_
=80
=50h

Y Start Position
= (panel height - x2 - 1) + (32 + bpp)
=(240-(60+120-1)-1) = (32+4)
=75
= 07h (truncated fractional part)

X End Position
= y2
=80+160-1
=239
= EFh

Y End Position
= (panel height - x1 - 1) + (32 + bpp)
=(240-60-1) + (32+4)
=22.375
= 16h (truncated fractional part)

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 50 Epson Research and Development
Vancouver Design Center
Program the PIP* Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 00EF0050h.
Program the PIP* Window Y Positions register with the Y Start Position in bits 9-0
and theY End Position in bits 25-16. REG[5Ch] is set to 00160007h.
Due to truncation, the dimensions of the PIP™ window may have changed. Recalculate
the PIP* window width and height below:
PIP" Width
= ((REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1) x (32 =+ bpp)
=(16h-07h+1) x (32 + 4)
= 128 pixels (note that thisisdifferent from the desired width)
PIP Height
= (REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1
=EFh-50h+1
=160 lines
Determine the PIP* display start address.
The main window image must take up 320 x 240 pixels x bpp + 8 = 9600h bytes. If
the main window starts at address Oh, then the PIP™ window can start at 9600h.
PIP* display start address
= ((desired byte address + (PIP* width x bpp + 8)
+ ((4 - (PIP* width x bpp + 8)) & 03h)) + 4) - 1
=((9600h + (128 x 4+ 8) + ((4- (128 x4+ 8)) & 03h)) + 4) - 1
=9615
= 258Fh
Program the PIP* Display Start Address register. REG[50h] is set to 0000258Fh.
Determine the PIP* line address offset.
number of dwords per line
= image width + (32 + bpp)
=128+ (32+4)
=16
=10h
Program the PIP* Line Address Offset register. REG[54h] is set to 00000010h.
Enable the PIP" window.
Program the PIP* Window Enable bit. REG[10h] bit 19 is set to 1.
S1D13A04 Programming Notes and Examples

X37A-G-003-05

Issue Date: 2002/08/21



Epson Research and Development Page 51
Vancouver Design Center

8.2.3 SwivelView 180°

180° SwivelView ™ . N
PIP+ window x end position
(REG[58h] bits 25-16) PIP+ window X start position
(REG[58h] bits 9-0)

l¢
Il

PIP+ window

A

A
main-window

PIP+ window y end position / N N
(REG[58h] bits 25-16) IP+ window y start position panel’s origin
(REG[5Ch] bits 9-0)

Figure 8-4: Picture-in-Picture Plus with Swivel View 180° enabled

SwivelView 180° is amode in which both the main and PIP™ windows are rotated 180°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by

the PIP* window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note

It is possible to use the same image for both the main window and PIP* window. To do

50, set the PIP* Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h]).

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 52 Epson Research and Development
Vancouver Design Center

Example 7:In SwivelView 180°, program the PIP* window registers for a 320x240
panel at 4 bpp, with the PIP* window positioned at SwivelView 180° co-
ordinates (80, 60) with a width of 160 and a height of 120.

1. Determine the value for the PIP* Window X Positions and PIP™ Window Y Positions
registers. Let the top left corner of the PIP* window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP*
Window X Positions register sets the horizontal coordinates of the PIP* window’s
bottom right and top left corner. The PIP™ Window Y Positions register sets the verti-
cal coordinates of the PIP™ window’ s bottom right and top left corner.

The required values are calculated as follows:

X Start Position
= (panel width - x2 - 1) + (32 + bpp)
=(320-(80+160-1)-1)+(32+4)
=10
=0Ah
Y Start Position
=panel height -y2-1
=240- (60+120-1)- 1
=60
=3Ch
X End Position
= (panel width - x1 - 1) + (32 + bpp)
=(320-80-1) +(32+4)
=29.875
= 1Dh (truncated fractional part)
Y End Position
= panel height - y1-1
=240-60-1
=179
=B3h

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 53
Vancouver Design Center

Program the PIP* Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 001D000A.
Program the PIP* Window Y Positions register with the Y Start Position in bits 9-0
and the Y End Position in bits 25-16. REG[5Ch] is set to 00B3003Ch.

Dueto truncation, the dimensions of the PIP* window may have changed. Recalculate
the PIP* window width and height below:

PIP" Width
= ((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1) x (32 + bpp)
=(1Dh-0Ah+1) x (32 + 4)
= 160 pixels

PIP Height
= (REG[5Ch] hits 25:16) - (REG[5Ch] bits 9:0) + 1
=B3h-3Ch+1
=120 lines

2. Determinethe PIP* display start address.
The main window image must take up 320 x 240 pixels x bpp + 8 = 9600h bytes. If
the main window starts at address Oh, then the PIP™ window can start at 9600h.

PIP" Stride
= image width x bpp + 8
=160x4+8
=80
=50h

PIP* display start address
= ((desired byte address + (PIP* Stride x (PIP" height - 1))
+ (PIP* width x bpp + 8) + ((4 - (PIP width x bpp + 8)) & 03h)) + 4) - 1
= ((9600h + (80 x (120 - 1)) + (160 x 4 = 8) + ((4 - (160 x 4 = 8))&03h)) + 4) - 1
=11999
= 2EDFh

Program the PIP* Display Start Address register. REG[50h] is set to 00002EDFh.

3. Determinethe PIP" line address offset.

number of dwords per line
= image width + (32 + bpp)
=160+ (32 + 4)
=20
= 14h

Program the PIP* Line Address Offset register. REG[54h] is set to 00000014h.

4. Enablethe PIP* window.

Program the PIP* Window Enable bit. REG[10h] bit 19 is set to 1.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 54 Epson Research and Development
Vancouver Design Center

8.2.4 SwivelView 270°

270° SwivelView™

) - main-window
PIP+ window y end position

(REG[5CH] bits 25-16)  ~~_|

>/
>

»)
P

PIP+ window y start position _
(REG[5Ch] bits 9-0) PIP+ window

I\ 4

T

PIP+ window x end position
(REG[58h] bits 25-16)

PIP+ window x start position
(REG[58h] bits 9-0) —

| —

panel’s origin

Figure 8-5: Picture-in-Picture Plus with SwivelView 270° enabled

SwivelView 270° is amode in which both the main and PIP" windows are rotated 270°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by

the PIP™ window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note

It is possible to use the same image for both the main window and PIP* window. To do

S0, set the PIP* Line Address Offset register (REG[54h]) to the same value as the Main
Window Line Address Offset register (REG[44h]).

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development

Vancouver Design Center

Page 55

Example 8: In SwivelView 270°, program the PIP* window registers for a 320x240

panel at 4 bpp, with the PIP* window positioned at SwivelView 270° co-

ordinates (60, 80) with a width of 120 and a height of 160.

1. Determinethe value for the PIP* Window X Positions and PIP" Window Y Positions

registers. Let the top left corner of the PIP* window be (x1, y1), and let the bottom
right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP*
Window X Positions register sets the vertical coordinates of the PIP* window’s top
right and bottom left corner. The PIP™ Window Y Positions register setsthe horizontal

coordinates of the PIP* window’ s top right and bottom left corner.

The required values are calculated as follows:

X Start Position
= panel width-y2-1
=320-(80+160-1)-1
=80
=50h

Y Start Position
=x1+ (32 + bpp)
=60+ (32+4)
=75
= 07h (truncated fractional part)

X End Position
= panel width-y1-1
=320-80-1
=239
= EFh

Y End Position
=x2+ (32 + bpp)
=(60+120-1)+(32+4)
=22.375
= 16h (truncated fractional part)

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 56

Epson Research and Development
Vancouver Design Center

Program the PIP* Window X Positions register with the X Start Position in bits 9-0
and the X End Position in bits 25-16. REG[58h] is set to 00EF0050h.
Program the PIP* Window Y Positions register with the Y Start Position in bits 9-0
and theY End Position in bits 25-16. REG[5Ch] is set to 00160007h.

Due to truncation, the dimensions of the PIP™ window may have changed. Recalculate
the PIP* window width and height below:

PIP" Width
= ((REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1) x (32 + bpp)
=(16h-07h + 1) x (32 + 4)
= 128 pixels (note that thisis different from the desired width)

PIP Height
= (REG[58h] bhits 25:16) - (REG[58h] bits 9:0) + 1
=EFh-50h+1
=160lines

Determine the PIP* display start address.
The main window image must take up 320 x 240 pixels x bpp + 8 = 9600h bytes. If
the main window starts at address Oh, then the PIP™ window can start at 9600h.

PIP" Stride
= image width x bpp + 8
=128x4+8
=64
=40h

PIP* display start address
= (desired byte address + ((PIP" height - 1) x PIP" Stride)) + 4
= (9600h + ((160 - 1) x 64)) + 4
= 12144
= 2F70h

Program the PIP* Display Start Address register. REG[50h] is set to 00002F70h.

Determine the PIP" line address offset.

number of dwords per line
= image width + (32 + bpp)
=128+ (32+4)
=16
= 10h

Program the PIP* Line Address Offset register. REG[54h] is set to 00000010h.

Enable the PIP* window.

Program the PIP* Window Enable bit. REG[10h] bit 19 is set to 1.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 57
Vancouver Design Center

8.3 Limitations

8.3.1 SwivelView 0° and 180°

The PIP* Line Address Offset register (REG[54h]) requires the PIP* window image width
to be amultiple of 32 + bits-per-pixel. If thisformulais not satisfied, then the PIP* Line
Address Offset register must be programmed to the next larger value that satisfies the
formula.

8.3.2 SwivelView 90° and 270°

The PIP* Line Address Offset register (REG[54h]) requires the PIP* window image width
to be amultiple of 32 + bits-per-pixel. If thisformulais not satisfied, then the PIP* Line
Address Offset register must be programmed to the next larger value that satisfies the
formula.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 58

Epson Research and Development
Vancouver Design Center

9 2D BitBLT Engine

9.1 Registers

BitBLT isan acronym for Bit Block Transfer. The 2D BitBLT Engineinthe SID13A04 is
designed to increase the speed of the most common GUI operations by off-loading work
from the CPU, reducing traffic on the system bus and freeing the CPU sooner for other
tasks.

BitBLTsrequire a destination - a place to write the display data. Most BitBLTs have a
source of datafor the BitBL T and many also incorporate a pattern. The pattern, source, and
destination operandsare combined using logical AND, OR, XOR and NOT operations. The
combining processis called a Raster Operation (ROP) and resultsin the final pixel datato
be written to the destination address.

The S1D13A04 2D BitBLT engine supportsatotal of sixteen ROPsand works at 8 bpp and
16 bpp color depths. This section describesthe BitBLT registers and provides some sample
BitBLT operations.

The SID13A04 BitBLT registers are located 8000h bytes from the start of SID13A04
address space. The registers are labelled, according to their byte offset, as REG[8000h]
through REG[8024h]. The following is a description of all BitBLT registers.

BitBLT Control Register
REG[8000h] Default = 00000000h Read/Write
Color Dest Source
n/a Format Linear Linear
Select Select Select
31 | 30 | 29 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 18 17 16
BitBLT
n/a Enable
(WO)
15 | 14 | 13 12 | 112 | 10 | 9o | 8 | 7 | & | 5 | 4 | 3 | 2 | 1 0

Color Format Select

The Color Format Select bit indicatesto the BitBLT engine what color depth to assumefor
the BitBLT operation. The BitBLT engine uses thisinformation to set the step size for
internal counters.

When this bit = 0, 8 bpp is selected and when this bit = 1, 16 bpp is selected.

Destination Linear Select

The Destination Linear Select bit determines how the BitBLT destination address pointer
is updated when the BitBLT reaches the end of arow.

When the end of arow isreached and rectangular is selected the destination address is
updated to point to the beginning of the next row of arectangular area. The offset to the
start of the next row is contained in the BitBLT Memory Address Offset register
(REG[8014h)).

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21




Epson Research and Development Page 59

Vancouver Design Center

Source Linear Select

BitBLT Enable

When the end of arow is reached and destination linear is selected the destination address
is updated to the next available memory offset. The result is data which isjammed
together with one row immediately following the next in display memory. Thisis useful
when it is desired to compactly save arectangular area into off screen memory.

When this bit = 0, the BitBLT destination is stored as a rectangular region of memory.
When this bit = 1, the BitBLT destination is stored as a contiguous linear block of mem-
ory.

The Source Linear Select bit determines how the source address pointer is updated when
the BitBLT reaches the end of arow.

When the end of arow isreached and rectangular is selected the source address is updated
to point to the beginning of the next row of arectangular area. The offset to the start of the
next row is contained in the BitBLT Memory Address Offset register (REG[8014h]).

When the end of arow is reached and source linear is selected the source addressis
updated to the next available memory offset. The result is data, which was jammed
together with one row immediately following the next in display memory, can now be
expanded back to arectangular area.

When this bit = 0, the BitBLT sourceis stored as arectangular region of memory.
When this bit = 1, the BitBLT sourceis stored as a contiguous linear block of memory.

Thisbit iswrite only.
Setting this bit to 1 beginsthe 2D BitBLT operation. Thisbit must not be set to Owhilea
BitBLT operation isin progress.

Note
To determine the status of a BitBL T operation use the BitBLT Busy Status bit
(REG[8004h] bit 0).

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 60

Epson Research and Development

Vancouver Design Center

BitBLT Status Register
REG[8004h] Default = 00000000h Read Only
n/a Number of Used FIFO Entries n/a Number of Free FIFO Entries (0 means full)
31 | 30 | 29 28 | 27 | 26 | 25 | 24 23 22 21 20 19 18 17 16
n/a Fl\ll’:)? HZIlfFI?uII Fll':ﬁ) n/a BBItLIJB'sLyT
Empty Status Status
15 | 14 | 13 | 12 | 112 | 10 | 9 | s 7 6 5 4 3 2 1 0

Number of Used FIFO Entries
Thisisaread-only status.
This field indicates the minimum number of FIFO entries currently in use (there may be
morein theinternal pipeline). If these bits return a0, the FIFO is empty.

Number of Free FIFO Entries
Thisisaread-only status bit
Thisfield indicates the number of empty FIFO entries available. If these bitsreturn a0, the
FIFO isfull.

FIFO Not-Empty
Thisisa read-only status bit.
When this bit = 0, the BitBLT FIFO is empty. When this bit = 1, the BitBLT FiFO has at
least one data. To reduce system latency, software can monitor this bit prior to a BitBLT
read burst operation.

The following table shows the number of words available in the BitBLT FIFO under dif-
ferent status conditions.

Table 9-1: BitBLT FIFO Words Available

BitBLT FIFO Full BitBLT FIFO Half BitBLT FIFO Not | Number of Words
Status Full Status Empty Status available in BitBLT
(REG[8004h] Bit 4) | (REG[8004h] Bit 5) | (REG[8004h] Bit 6) FIFO
0 0 0 0
0 0 1 1t06
0 1 1 71t014
1 1 1 15t0 16

BitBLT FIFO Half Full Status
Thisisaread-only status bit.
When thisbit = 1, the BitBLT FIFO is half full or greater than half full. When this bit = 0,
the BitBLT FIFO isless than half full.

BitBLT FIFO Full Status
Thisisaread-only status bit.
When this bit = 1, the BitBLT FIFO is full. When this bit = 0, the BitBLT FIFO is not full.

BitBLT Busy Status
Thisbit isaread-only status bit.
When thisbit = 1, the BitBLT operation isin progress. When this bit = 0, the BitBLT oper-
ation is complete.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development

Vancouver Design Center

Page 61

Note
During aBitBLT Read operation, the BitBLT engine does not attempt to keep the FIFO
full. If the FIFO becomes full, the BitBL T operation stops temporarily as datais read
out of the FIFO. The BitBLT will restart only when less than 14 values remain in the

FIFO.

BitBLT Command Register

REG[8008h] Default = 00000000h Read/Write
n/a BitBLT ROP Code bits 3-0

31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 20 19 | 18 | 17 | 18
n/a BitBLT Operation bits 3-0

15 | 14 | 13 | 122 | 12 | 10 | 9 | 8 | 7 | & | s 4 3 | 2 | 1 | o

BitBLT ROP Code

The BitBLT ROP Code specifies the Raster Operation to be used for Write and Move Bit-
BLTs. Inaddition, for Color Expansion, the BitBLT ROP Code bits 2-0 specify the start bit
position for Color Expansion BitBLTs.

Table9-2: BIitBLT ROP Code/Color Expansion Function Selection

BitBLT ROP Code Bits |Boolean Function for Write |Boolean Function for Start Bit Position for Color
[3:0] BitBLT and Move BitBLT Pattern Fill Expansion
0000 0 (Blackness) 0 (Blackness) bit 0
0001 ~S.~Dor~(S +D) ~P.~Dor~(P +D) bit 1
0010 ~S.D ~P.D bit 2
0011 ~S ~P bit 3
0100 S.~D P.~D bit 4
0101 ~D ~D bit 5
0110 S~D P~D bit 6
0111 ~S+~Dor~(S.D) ~P+~Dor~(P.D) bit 7
1000 S.D P.D bit 0
1001 ~(S~D) ~(P ~ D) bit 1
1010 D D bit 2
1011 ~S+D ~P+D bit 3
1100 S P bit 4
1101 S+-~D P+~D bit 5
1110 S+D P+D bit 6
1111 1 (Whiteness) 1 (Whiteness) bit 7

Note
S = Source, D = Destination, P = Pattern.
~=NOT, .=Logica AND, +=Logical OR, * = Logical XOR

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05




Page 62

Epson Research and Development
Vancouver Design Center

BitBLT Operation

The BitBLT Operation selects which BitBLT operation performed. The following table
lists the available BitBLT operations.

Table 9-3: BItBLT Operation Selection

BitBLT Operation . .
Bits [3:0] BitBLT Operation

0000 Write BitBLT with ROP
This operation refers to BitBLTs where data is to be transferred from system memory to display memory
Read BitBLT

0001 ) ] ) ] ]
This operation refers to BitBLTs where data is to be transferred from display memory to system memory

0010 Move BIitBLT in positive direction with ROP
This operation is used to transfer data from display memory to display memory

0011 Move BitBLT in negative direction with ROP
This operation is used to transfer data from display memory to display memory
Transparent Write BitBLT

0100 Like the Write BitBLT this operation is used when transferring data from system memory to display
memory, the difference is that destination pixels will be left “as is” when source pixels of a specified color
are encountered.
Transparent Move BitBLT in positive direction

0101 As with the Move BitBLTs this operation is used to transfer data from display memory to display memory.
The difference is that destination pixels will be left “as is” when source pixels of a specified color are
encountered.
Pattern Fill with ROP

0110 . g . . . . .
Fills the specified area of display memory with a repeating pattern stored in display memory.
Pattern Fill with transparency

0111 As with the Pattern Fill, this BitBLT fills a specified area of display memory with a repeating pattern,
destination pixels will be left “as is” when source pixels of a specified color are encountered.
Color Expansion

1000 This BitBLT expands the bits of the source data into full pixels at the destination. If a source bit is 0 the
destination pixel will be background color and if the source bit is 1 the destination pixel will be of foreground
color. The source data for Color Expansion BitBLTs is always system memory.
Color Expansion with transparency

1001 Like the Color Expansion BitBLT, this operations expands each bit of the source data to occupy a full
destination pixel. The difference, is that destination pixels corresponding to source bits of 0 will be left “as
is”. The data source is system memory
Move BitBLT with Color Expansion

1010 This BitBLT works the same as the Color Expansion BitBLT however the source of the BitBLT is display
memory.
Move BitBLT with Color Expansion and transparency

1011 This BitBLT works the same as the Color Expansion with Transparency BitBLT however the source of the
BitBLT is display memory.
Solid Fill BitBLT

1100
Use this BitBLT to fill a given area with one solid color.

O'ther. Reserved

combinations

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21




Epson Research and Development Page 63

Vancouver Design Center

BitBLT Source Start Address Register

REG[800Ch] Default = 00000000h Read/Write
n/a BitBLT Source Start Address bits 20-16
31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 20 | 10 | 18 | 17 | 18
BitBLT Source Start Address bits 15-0
15 | 14 | 13 | 12 | 112 ] 10 | 9o | 8 | 7 | 6 | 5 | 4 | 3 ] 2 | 1 | o

BitBLT Source Start Address
Thisregister has multiple meanings depending on the BitBLT operation it specifies. It can
be either:

« the start address in display memory of the source data for BitBLTs where the sourceis
display memory (i.e. Move BitBLTs).

* in pattern fill operations, the BitBLT Source Start Address determines where in the
pattern to begin the BitBL T operation and is defined by the following equation:
Value programmed to the Source Start Address Register =
Pattern Base Address + Pattern Line Offset + Pixel Offset.

* the data aignment for 16 bpp BitBLTs where the source of BitBLT dataisthe CPU
(i.e. Write BitBLTS).

The following table shows how Source Start Address Register is defined for 8 and 16 bpp
color depths.

Table9-4: BitBLT Source Sart Address Selection

Color Format Pattern Base Address[20:0] Pattern Line Offset[2:0] Pixel Offset[3:0]
. ) BitBLT Source Start BitBLT Source Start
8 bpp BitBLT Source Start Address[20:6] Address[5:3] Address[2:0]
. ) BitBLT Source Start BitBLT Source Start
16 bpp BitBLT Source Start Address[20:7] Address[6:4] Address[3:0]
BitBLT Destination Start Address Register
REG[8010h] Default = 00000000h Read/Write
n/a BitBLT Destination Start Address bits 20-16
31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 20 | 19 | 18 | 17 | 1s
BitBLT Destination Start Address bits 15-0
5 | 14 | 13 | 122 | 112 ] 10| 9o | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o

BitBLT Destination Start Address
Thisregister specifiesthe initial destination address for BitBLT operations. For rectangu-
lar destinations this address represents the upper | eft corner of the BitBLT rectangle. If the
operation isa Move BitBLT in a Negative Direction, these bits define the address of the
lower right corner of the rectangle.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Page 64 Epson Research and Development
Vancouver Design Center

BitBLT Memory Address Offset Register
REG[8014h] Default = 00000000h Read/Write
n/a
31 | 30 | 20 | 28 | 27 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
n/a BitBLT Memory Address Offset bits 10-0
15 | 14 | 13 | 12 | 1 0o | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o

BitBLT Memory Address Offset
Thisregister specifiesthe 11-bit address offset from the starting word of line n to the start-
ing word of linen + 1. The offset value is only used for address calculation when the
BitBLT is configured as rectangular.

BitBLT Width Register
REG[8018h] Default = 00000000h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
n/a BitBLT Width bits 9-0
15 | 14 | 13 | 12 | 112 | 10 o | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o
BitBLT Width

This register specifies the width of aBitBLT in pixels- 1.

BitBLT width (in pixels) = REG[8018h] + 1

BitBLT Height Register
REG[801Ch] Default = 00000000h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
n/a BitBLT Height bits 9-0
15 | 14 | 13 | 12 | 112 | 10 o | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o

BitBLT Height
This register specifies the height of the BitBLT inlines- 1.

BitBLT height (in lines) = REG[801ChH] + 1

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 65
Vancouver Design Center

BitBLT Background Color Register

REG[8020h] Default = 00000000h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
BitBLT Background Color bits 15-0
15 | 14 | 13 | 12 | 12 | 10 | 9 | 8 | 7 | & | 5 | 4 | 3 | 2 | 1 | o

BitBLT Background Color
Thisregister specifies either:

* the BitBL T background color for Color Expansion

or

* the key color for Transparent BitBLT. For 8 bpp BitBLTSs, bits 7-0 are used to specify
the key color and for 16 bpp BitBLTs, bits 15-0 are used.

BitBLT Foreground Color Register
REG[8024h] Default = 00000000h Read/Write
n/a
31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 18
BitBLT Foreground Color bits 15-0
15 | 14 | 13 | 12 | 12 | 10 | 9 | 8 | 7 | & | 5 | 4 | 3 | 2 | 1 | o

BitBLT Foreground Color
Thisregister specifies the foreground color for Color Expansion or Solid Fill BitBLTs. For
8 bpp BitBLTSs, bits 7-0 are used to specify the color and for 16 bpp BitBLTSs, bits 15-0 are

used.
2D Accelerator (BitBLT) Data Memory Mapped Region Register
AB16-ABO0 = 10000h-1FFFEh, even addresses Read/Write
BitBLT Data bits 31-16
31 | 30 | 20 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
BitBLT Data bits 15-0
15 | 14 | 13 | 122 | 112 | 20 | 9o | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | o

BitBLT Data bits
Thisregister is used by the local CPU to send datato the BitBLT engine for Write and
Color Expansion BitBLTs and is used to read data from the BitBLT engine for Read
BitBLTs. Theregister should be treated as any other register it is however loosely decoded
from 10000h to 1FFFEh.

Note
TheBIitBLT dataregistersare 32 bits wide but are accessed on WORD boundaries using

16 hit accesses. Byte access to the BitBLT dataregistersis not allowed.

Note
Accesses to this register, other than for purposes of aBitBL T operation may cause the

13A04 to stop responding and the system to hang.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 66

Epson Research and Development
Vancouver Design Center

9.2 BIitBLT Descriptions

The S1D13A 04 supports 13 fundamental BitBL T operations:
e Write BitBLT with ROP

e Read BitBLT

* Move BitBLT in positive direction with ROP

* MoveBitBLT in negative direction with ROP

e Transparent Write BitBLT

» Transparent Move BitBLT in positive direction

* Pattern Fill with ROP

« Pattern Fill with Transparency

e Color Expansion

 Color Expansion with Transparency

* MoveBitBLT with Color Expansion

» Move BitBLT with Color Expansion and Transparency
* Solid Fill

Most of the 13 operations are self completing. This means once the BitBL T operation
begins it completes without further assistance from the local CPU. No data transfers are
required to or from the local CPU. Five BitBL T operations (Write BitBLT with ROP,
Transparent Write BitBL T, Color Expansion, Color Expansion with Transparency, Read
BitBLT) require datato be written to/read from the BitBL T engine. Thisdatamust be trans-
ferred one word (16-bits) at atime. This does not imply only 16-bit CPU instructions are
acceptable. If asystem is able to separate one DWORD write into two WORD writes and
the CPU writes the low word before the high word, then 32-bit CPU instructions are
acceptable. Otherwise, 16-bit CPU instructions are required.

Thedataisnot directly written to/read from the display buffer. It iswritten to/read from the
BitBLT FIFO through the 64K byte BitBLT aperture specified at the address of
REG[10000h]. The 16 word FIFO can bewritten to only when not full and can beread from
only when not empty. Failing to monitor the FIFO status can result in aBitBLT FIFO
overflow or underflow.

Whilethe FIFO is being written to by the CPU, it is also being emptied by the SID13A04.
If the SID13A 04 emptiesthe FIFO faster than the CPU canfill it, it may not be possible to
cause an overflow/underflow. In these cases, performance can be improved by not
monitoring the FIFO status. However, this is very much platform dependent and must be
determined for each system.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 67
Vancouver Design Center

9.2.1 Write BitBLT with ROP

Write BitBL Ts increase the speed of transferring data from system memory to the display
buffer. The Write BitBLT with ROP accepts data from the CPU and writesit into display
memory. ThisBitBLT istypically used to copy abitmap image from system memory to the
display buffer.

Write BitBL Ts support 16 ROPs, the most frequently used being ROP 0Ch (Copy Source
to Destination). Write BitBL Ts support both rectangular and linear destinations. Using a
linear destination it is possible to move animageto off screen memory in acompact format
for later restoration using a Move BitBLT.

During aWrite BitBL T operation the BitBL T engine expectsto receive aparticular number
of WORDs and it is the responsibility of the CPU to provide the required amount of data.

When performing BitBL T at 16 bpp color depth the number of WORDS to be sent isthe
same as the number of pixelsto be transferred as each pixel is one WORD wide. The
number of WORD writesthe BitBL T engine expectsis calculated using the following
formula.

WORDS = Pixels
= BitBLTWidth x BitBLTHeight

When the color depth is 8 bpp the formula must take into consideration that the BitBL T
engine accepts only WORD accesses and each pixel isone BY TE. Thismay lead to a
different number of WORD transfers than there are pixels to transfer.

The number of WORD accesses is dependant on the position of the first pixel within the
first WORD of each row. Isthe pixel stored in the low byte or the high byte of the WORD?
This aspect of the BitBLT is called phase and is determined as follows:

Source phase is 0 when the first pixel isin the low byte and the second pixel isin the high
byte of the WORD. When the source phaseis 0, bit 0 of the Source Start Address Register
is0. The Source Phaseis 1if thefirst pixel of each row iscontained in the high byte of the
WORD, the contents of the low byte are ignored. When the source phaseis 1, bit O of the
Source Start Address Register is set.

Depending on the Source Phase and the BitBLT Width, the last WORD may contain only
onepixel. Inthiscaseitisalwaysinthelow byte. The number of WORD writesthe BitBLT
engine expects for 8 bpp color depthsis shown in the following formula.

WORDS = ((BitBLTWidth + 1 + SourcePhase) + 2) x BitBLTHeight

The BitBLT engine requires this number of WORDS to be sent from the local CPU before
it will end the Write BitBLT operation.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 68

Epson Research and Development
Vancouver Design Center

Note
The BitBLT engine counts WORD writes made to the BitBL T register space. This does
not imply only 16-bit CPU instructions are acceptable. If asystem isableto separate one
DWORD write into two WORD writes and the CPU writes the low word before the
high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instruc-
tions are required.

Example 9: Write a 100 x 20 rectangle at the screen coordinates x =25, y = 38 using
a 320x240 display at a color depth of 8 bpp.

1. Calculate the destination address (upper left corner of the screen BitBL T rectangle)
using the following formula.

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
=(38x320) + (25 % 1)
=12185
=2F9%h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 320 for 8 bpp

Program the BitBL T Destination Start Address Register. REG[8010h] is set to 2F99h.

2. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

3. Program the BitBLT Height Register to 20 - 1. REG[801Ch] is set to 13h (19 deci-
mal).

4. Program the Source Phasein the BitBLT Source Start Address Register. In this exam-
ple the datais WORD aligned, so the source phase is 0. REG[800CHh] is set to 00h.

5. Program the BitBLT Operation Register to select the Write BitBLT with ROP.
REG[8008h] bits 3-0 are set to Oh.

6. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to OCh.

7. Programthe BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
issetto 0.

8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS:

BLTMemoryOffset = DisplayWidthinPixels + BytesPerPixel
=320+ 2
= A0Oh

REG[8014h] is set to ACh.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 69
Vancouver Design Center

9. Calculate the number of WORDS the BitBL T engine expects to receive.

WORDS = ((BLTWidth + 1 + SourcePhase) + 2) x BLTHeight
=(100+1)+2x20
= 1000
=3E8h

10. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select =0, BitBLT Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBL T engineto start. REG[8000h] bit
Oisset to 1, then wait until REG[8004h] bit O returns a 1.

11. Prior to writing any datato the BitBLT FIFO, confirm the BitBLT FIFO isnot full
(REG[8004h] bit 4 returns a 0).
If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returnsa0, the FIFO is
empty. Write up to 16 WORDS to the BitBL T dataregister area.
If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returnsa 1 and the BitBL T
FIFO Half Full Status (REG[8004h] bit 5) returns a 0 then you can writeup to 8
WORDS.
If the BitBLT FIFO Full Statusreturnsa 1, do not writeto the BitBLT FIFO until it re-
turns a 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

Table 9-5: Possible BitBLT FIFO Writes

BitBLT Status Register (REG[8004h]) Word Writes
FIFO Not Empty Status | FIFO Half Full Status FIFO Full Status Available
0 0 0 16
1 0 0 8
1 1 0 upto8
1 1 1 0 (do not write)

Note
The sequence of register initialization isirrelevant aslong as al required registers are
programmed before the BitBLT is started.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 70 Epson Research and Development
Vancouver Design Center

9.2.2 Color Expansion BitBLT

Similar to the Write BitBL T, the Color Expansion BitBL T requiresthe CPU to feed datato
the BitBL T data register It differsin that bits set to one in the source data becomes a
complete pixel of foreground color. Source bits set to zero are converted to a pixel of
background color. The intended use of this BitBL T operation is to increase the speed of
writing text to display memory. Aswith the Write BitBL T, all data sent to the BitBLT
engine must be WORD (16-bit) writes.

The BitBL T engine expandsfirst the low byte, then the high byte starting at bit 7 of
each byte. The start byte of thefirst WORD to be expanded and the start bit position within
this byte must be specified. The start byte position is selected by setting source address bit
0to O to start expanding the low byte or 1 to start expanding the high byte.

Partially “masked” color expansion BitBLTs can be used when drawing a portion of a
pattern (i.e. a portion of acharacter) on the screen. The following examplesillustrate how
one WORD is expanded using the Color Expansion BitBLT.

1. To expand bits 0-1 of the word:

Source Address=0
Start Bit Position = 1
BitBLT Width=2

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte
2. To expand bits 0-15 of the word (entire word)

Source Address=0
Start Bit Position = 7 (bit seven of the low byte)
BitBLT Width = 16

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 71
Vancouver Design Center

3. Toexpand hits 8-9 of the word

Source Address=1
Start Bit Position = 1
BitBLT Width=2

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte
4. To expand bits 0,15-14 of the word

Source Address=0
Start Bit Position =0
BitBLT Width=3

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte

All subsequent WORDS in one BitBLT line are then serially expanded starting at bit 7 of
the low byte until the end of the BitBLT line. All unused bitsin the last WORD are
discarded. It is extremely important that the exact number of WORDS is provided to the
BitBLT engine. The number of WORDS is calculated from the following formula. This
formulaisvalid for al color depths (8/16 bpp).

WORDS = ((Sx MOD 16 + BitBLTWidth + 15) + 16) x BitBL THeight

where:
Sx isthe X coordinate of the starting pixel in aword aligned monochrome bitmap.

Monochrome Bitmap
Byte 1 Byte 2

Sx= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 72 Epson Research and Development
Vancouver Design Center

Example 10: Color expand a rectangle of 12 x 18 starting at the coordinates
Sx =125, Sy = 17 using a 320x240 display at a color depth of 8 bpp.

This example assumes a monochrome, WORD aligned bitmap of dimensions 300 x 600
withtheorigin at an address A. The color expanded rectangle will be displayed at the screen
coordinates X = 20, Y = 30. The foreground color correspondsto the LUT entry at index
134, the background color to index 124.

1. First we need to calculate the address of the WORD within the monochrome bitmap
containing the pixel x =125,y = 17.

SourceAddress = BitmapOrigin + (y x SourceStride) + (x + 8)

= A + (Sy x SourceStride) + (Sx + 8)
=A +(17x 38) + (125 + 8)

=A+646+15
=A +661
where:
SourceStride = (BitmapWidth + 15) + 16

=(300+15) + 16
=19 WORDS per line
=38BYTESper line

2. Calculate the destination address (upper left corner of the screen BitBL T rectangle)
using the following formula.

DestinationAddress = (Y x ScreenStride) + (X x BytesPerPixel)
=(30x320) + (20 x 1)
= 9620
= 2594h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 320 for 8 bpp

Program the BitBL T Destination Start Address Register. REG[8010h] is set to 2594h.
3. Program the BitBLT Width Register to 12 - 1. REG[8018h] is set to OBh (11 decimal).

4. Program the BitBLT Height Register to 18 - 1. REG[801Ch] is set to 11h (17 deci-
mal).

5. Program the Source Phase in the BitBLT Source Start Address Register. In this exam-
ple the source address equals A + 661 (odd), so REG[800Ch] is set to 1.

Since only bit O flags the source phase, more efficient code would simply write the
low byte of the SourceAddress into REG[800Ch] directly -- not needing to test for an
odd/even address. Note that in 16 bpp color depths the Source addressis guaranteed to
be even.

6. Program the BitBLT Operation Register to select the Color Expand BitBLT.
REG[8008h] bits 3-0 are set to 8h.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 73

Vancouver Design Center

7.

10.

11.

12.

13.

Program the Color Expansion Register. The formulafor this exampleis as follows.

Color Expanson =7-(Sx MOD 8)
=7-(125MOD 8)
=7-5
=2

REG[8008H] is set to 2h.

Program the Background Color Register to the background color. REG[8020h] is set
to 7Ch (124 decimal).

Program the Foreground Color Register to the foreground color. REG[8024h] is set to
86h (134 decimal).

Program the BitBL T Color Format Register for 8 bpp operation. REG[8000h] bit 18 is
setto O.

Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.
BltMemoryOffset = ScreenStride + 2
=320+2
= AOh

REG[8014h] is set to AOh.

Calculate the number of WORDS the BitBL T engine expects to receive.
First, the number of WORDS in one BitBL T line must be calculated as follows.

WordsOnelLine =((125 MOD 16) + 12+ 15) + 16
=(13+12+15)+ 16
=40+ 16
=2
Therefore, the total WORDS the BitBL T engine expectsto receive is calculated as
follows.

WORDS = WordsOneLine x 18
=2x18
=36

Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select =0, BitBLT Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBLT Engineto start. REG[8000h]
bit 0 isset to 1, then wait until REG[8004h] bit O returnsa 1.

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 74

Epson Research and Development
Vancouver Design Center

14. Prior to writing all WORDS to the BitBLT FIFO, confirm the BitBLT FIFO isnot full
(REG[8004h] hit 4 returns a0). One WORD expands into 16 pixels which fills all 16
FIFO wordsin 16 bpp or 8 FIFO wordsin 8 bpp.

The following table summarizes how many words can be written to the BitBLT FIFO.

Table 9-6: Possible BitBLT FIFO Writes

BitBLT Status Register (REG[8004h]) 8 bpp Word 16 bpp Word
FIFO Not Empty Status | FIFO Half Full Status FIFO Full Status Writes Available | Writes Available
0 0 0 2 1
1 0 0 1
1 1 0 0 (do not write
i i i 0 (do not write) ( )

9.2.3 Color Expan

9.2.4 Solid Fill Bit

Note
The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

sion BitBLT With Transparency

ThisBitBLT operation isvirtually identical to the Color Expand BitBLT, the differenceis
in how background bits are handled. Bitsin the source bitmap which are set to zero result
in the destination pixel being left untouched. Bits set to one are expanded to the foreground
color.

Use this BitBL T operation to overlay text onto any background while leaving the
background intact.

Refer to the Color Expansion BitBL T for sample calculations and keep the following points
in mind:

e Program the BitBL T operation bits, REG[8008h] bits 3-0, to 09h instead of 08h.
 Setting a background color, REG[8020h], is not required.

BLT

The Solid Fill BitBLT fillsarectangular area of the display buffer with asolid color. This
operation is used to paint large screen areas or to set areas of the display buffer to agiven
value.

ThisBitBLT operation is self completing. After setting the width, height, destination start
position and (foreground) color the BitBLT engineis started. When the region of display
memory isfilled with the given color the BitBLT engine will automatically stop.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 75
Vancouver Design Center

Example 11: Fill ared 9 x 301 rectangle at the screen coordinates x = 100, y = 10 us-
ing a 320x240 display at a color depth of 16 bpp.

1. Caculate the destination address (upper left corner of the destination rectangle) using
the following formula.

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (10 x (320 x 2)) + (100 x 2)
= 6600
=19C8h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 640 for 16 bpp.

Program the BitBL T Destination Start Address Register. REG[8010h] is set to 19C8h.
2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 301 - 1. REG[801Ch] is set to 12Ch (300 dec-
imal).

4. Programthe BitBLT Foreground Color Register. REG[8024h] is set to F800h (Full in-
tensity red in 16 bpp is F800h).

5. Program the BitBLT Operation Register to select Solid Fill. REG[8008h] bits 3-0 are
set to OCh.

6. ProgramtheBitBLT Color Format Register for 16 bpp operations. REG[8000h] bit 18
issetto 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320
= 140h

REG[8014Hh] is set to 0140h.

8. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select =0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[8000h] bit O is set to 1.

Note
The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Epson Research and Development
Vancouver Design Center

9.2.5 Move BitBLT in a Positive Direction with ROP

The Move BitBLT is used to copy one area of display memory to another areain display
memory.

The source and the destination areas of the BitBLT may be either rectangular or linear.
Performing arectangular to rectangular Move BitBL T creates an exact copy of one portion
of video memory at the second location. Selecting arectangular sourceto linear destination
would be used to compactly store an area of displayed video memory into non-displayed
video memory. Later, the area could be restored by performing alinear source to rectan-
gular destination Move BitBLT.

The Move BitBLT in a Positive Direction with ROP is a self completing operation. Once
the width, height and the source and destination start addresses are setup and the BitBL T is
started the BitBL T engine will complete the operation automatically.

Should the source and destination areas overlap a decision has to be made as to whether to
use a Positive or Negative direction so that source data is not overwritten by the move
beforeit isused. Refer to Figure 9-1: to see when to make the decision to switch to the
Move BitBLT in a Negative direction. When the destination area overlaps the original
source area and the destination address is greater then the source address, use the Move
BitBLT in Negative Direction with ROP.

Destination Address less than Source Address
Use Move BIitBLT in Positive Direction

Destination Address greater than Source Address
Use Move BitBLT in Negative Direction

Figure 9-1: Move BitBLT Usage

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 77
Vancouver Design Center

Example 12: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to
screen coordinates x =200, y = 20 using a 320x240 display at a color
depth of 16 bpp.

1. Caculate the source and destination addresses (upper left corners of the source and
destination rectangles), using the following formula.

SourceAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (10 x (320 x 2)) + (100 x 2)
= 6600
=19C8h

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (20 x (320 x 2)) + (200 x 2)
=13200
=3390h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 640 for 16 bpp

Program the BitBL T Source Start Address Register. REG[800CHh] is set to 19C8h.
Program the BitBL T Destination Start Address Register. REG[8010h] is set to 3390h.

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 101 - 1. REG[801Ch] is set to 64h (100 deci-
mal).

4. Program the BitBLT Operation Register to select the Move BitBLT in Positive Direc-
tion with ROP. REG[8008h] bits 3-0 are set to 2h.

5. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to OCh.

6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit
18issetto 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320
= 140h

REG[8014h] is set to 0140h.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 78

Epson Research and Development
Vancouver Design Center

8. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[8000h] bit O is set to 1.

Note
The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

9.2.6 Move BitBLT in Negative Direction with ROP

The Move BitBLT in Negative Direction with ROP is similar to the Move BitBLT in
Positive direction. Use this BitBLT operation when the source and destination BitBLT
areas overlap and the destination addressis greater then the source address. Refer to Figure
9-1: on page 76 to see when to make the decision to switch to the Move BitBLT ina
Positive direction.

When using the Move BitBLT in Negative Direction it is necessary to calculate the
addresses of the last pixels as opposed to the first pixels. This means calculating the
addresses of the lower right corners as opposed to the upper left corners.

Example 13: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to
screen coordinates X = 105, Y = 20 using a 320x240 display at a color
depth of 16 bpp.

In the following example, the coordinates of the source and destination rectangles inten-
tionally overlap.

1. Caculate the source and destination addresses (lower right corners of the source and
destination rectangles) using the following formula.

SourceAddress
= ((y + Height - 1) x ScreenStride) + ((x + Width - 1) x BytesPerPixel)
=((10+101-1)x(320x 2)) +((100+9-1) x 2)
= 70616
=113D8h

DestinationAddress
=((Y + Height - 1) x ScreenStride) + ((X + Width - 1) x BytesPerPixel)
=((20+101-1) x(320x 2)) + ((105+9-1) x 2)
= 77026
=12CE2h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 640 for 16 bpp

Program the BitBL T Source Start Address Register. REG[800CHh] is set to 113D8h.

Program the BitBL T Destination Start Address Register. REG[8010h] is set to
12CE2h.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 79
Vancouver Design Center

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 101 - 1. REG[801Ch] is set to 64h (100 deci-
mal).

4. Program the BitBLT Operation Register to select the Move BitBLT in Negative Di-
rection with ROP. REG[8008] bits 3-0 are set to 3h.

5. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to OCh.

6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit
18issetto 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320
=140h

REG[8014h] is set to 0140h.

8. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select =0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[8000h] bit O is set to 1.

Note
The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

9.2.7 Transparent Write BitBLT

Transparent Write BitBL Ts are similar to the Write BitBL T with ROP with two differ-
ences; first, a specified color in the source data leaves the destination pixel untouched and
second ROPs are not supported.

This operation is used to copy a bitmap image from system memory to the display buffer
with one color marked as transparent. Pixels of the transparent color are not transferred.
This allows fast display of non-rectangular or masked images. For example, consider a
source bitmap having ared circle on a blue background. By selecting the blue as the trans-
parent color and using the Transparent Write BitBLT on the whole rectangle, the effect is
aBitBLT of thered circle only.

During a Transparent Write BitBL T operation the BitBLT engine expectsto receive a
particular number of WORDsand it isthe responsibility of the CPU to providetherequired
amount of data.

When performing BitBLTs at 16 bpp color depth the number of WORDS to be sent isthe
same as the number of pixels as each pixel is one WORD wide. The number of WORD
writes the BitBL T engine expects is cal culated using the following formula.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 80 Epson Research and Development
Vancouver Design Center

WORDS = Pixels
= BitBLTWidth x BitBL THeight

When the color depth is 8 bpp the formula must take into consideration that the BitBLT
engine accepts only WORD accesses and each pixel isone BY TE. Thismay lead to a
different number of WORD transfers than there are pixelsto transfer.

The number of WORD accesses is dependant on the position of the first pixel within the
first WORD of each row. Isthe pixel stored in the low byte or the high byte of the WORD?
This aspect of the BitBLT is caled phase and is determined as follows:

Source phaseis 0 when the first pixel isin the low byte and the second pixel isin the high
byte of the WORD. When the source phaseis 0, bit O of the Source Start Address Register
is0. The Source Phaseis 1if thefirst pixel of each row is contained in the high byte of the
WORD, the contents of the low byte are ignored. When the source phaseis 1, bit 0 of the
Source Start Address Register is set.

Depending on the Source Phase and the BitBLT Width, the last WORD may contain only
onepixel. Inthiscaseitisawaysin thelow byte. The number of WORD writesthe BitBLT
engine expects for 8 bpp color depths is shown in the following formula.

WORDS = ((BitBLTWidth + 1 + SourcePhase) + 2) x BitBLTHeight

Once the Transparent Write BitBLT begins, the BitBLT engine remains active until all
pixels have been written. The BitBLT engine requires this number of WORDS to be sent
from the local CPU before it ends the Transparent Write BitBL T operation.

Note
The BitBLT engine counts WORD writes made to the BitBL T register. This does not
imply only 16-bit CPU instructions are acceptable. If a system is able to separate one
DWORD write into two WORD writes and the CPU writes the low word before the
high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instruc-
tions are required.

Example 14: Write 100 x 20 pixels at the screen coordinates x =25, y =38 using a
320x240 display at a color depth of 8 bpp. Transparent color is high in-
tensity blue (assume LUT Index 124).

1. Caculate the destination address (upper left corner of the screen BitBL T rectangle),
using the formula:

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
=(38%x320) +(25x 1)
=12185
= 2F9%h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels x BytesPerPixel = 320 for 8 bpp

Program the BitBL T Destination Start Address Register. REG[8010h] is set to 2F99h.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 81

Vancouver Design Center

10.

Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

Program the BitBLT Height Register to 20 - 1. REG[801Ch] is set to 13h (19 deci-
mal).

Program the Source Phasein the BitBLT Source Start Address Register. In this exam-
ple, the datais WORD aligned, so the source phaseis 0. REG[800Ch] is set to 00h.

Program the BitBLT Operation Register to select Transparent Write BitBLT.
REG[8008h] bits 3-0 are set to 4h.

Program the BitBL T Background Color Register to select transparent color.
REG[8020h] is set to 7Ch (124 decimal).

Program the BitBL T Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
issettoO.

Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320+2
=160
= A0Oh

REG[8014h] is et to OAOh.

Calculate the number of WORDS the BitBL T engine expects to receive.

WORDS = ((BLTWidth + 1 + SourcePhase) + 2) x BLTHeight
=(100+1+0)+=2x20
= 1000
= 3E8h

Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBL T engineto start. REG[8000h] bit
Oisset to 1, then wait until REG[8004h] bit O returns a 1.

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 82

Epson Research and Development
Vancouver Design Center

11. Prior to writing any datato the BitBLT FIFO, confirm the BitBLT FIFO is not full
(REG[8004h] bit 4 returnsa 0).
If the BitBLT FIFO Not Empty Status (REG[8004h] hit 6) returnsa 0, the FIFO is
empty. Write up to 16 WORDS to the BitBL T data register area.
If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returnsa 1 and the BitBLT
FIFO Half Full Status (REG[8004h] bit 5) returns a 0 then you can write up to 8
WORDS.
If the BitBLT FIFO Full Statusreturnsa 1, do not write to the BitBLT FIFO until it re-
turnsa 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

Table 9-7: Possible BitBLT FIFO Writes

BitBLT Status Register (REG[8004h]) Word Writes
FIFO Not Empty Status | FIFO Half Full Status FIFO Full Status Available
0 0 0 16
1 0 0 8
1 1 0 less than 8
1 1 1 0 (do not write)
Note

The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

9.2.8 Transparent Move BitBLT in Positive Direction

The Transparent Move BitBL T in Positive Direction combinesthe capabilities of the Move
BitBL T with the ability to define a transparent color. Use this operation to copy a masked
area of display memory to another areain display memory.

The source and the destination areas of the BitBLT may be either rectangular or linear.
Performing arectangular to rectangular Move BitBL T creates an exact copy of one portion
of video memory at the second location. Selecting arectangular sourceto linear destination
would be used to compactly store an area of displayed video memory into non-displayed
video memory. Later, the area could be restored by performing alinear source to rectan-
gular destination Move BitBLT.

The transparent color is not copied during this operation, whatever pixe color existed in
the destination will be there when the BitBLT completes. This allows fast display of non-
rectangular images. For example, consider a source bitmap having ared circle on ablue
background. By selecting the blue color as the transparent color and using the Transparent
Move BitBLT on the whole rectangle, the effect isa BitBL T of the red circle only.

Note
The Transparent Move BitBL T is supported only in a positive direction.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 83
Vancouver Design Center

Example 15: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to
screen coordinates X = 200, Y = 20 using a 320x240 display at a color
depth of 16 bpp. Transparent color is blue.

1. Caculate the source and destination addresses (upper left corners of the source and
destination rectangles), using the formula:

SourceAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (10 x (320 x 2)) + (100 x 2)
= 6600
=19C8h

DestinationAddress = (Y x ScreenStride) + (X x BytesPerPixel)
= (20 x (320 x 2)) + (200 x 2)
=13200
=3390h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 640 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800CHh] is set to 19C8h.
Program the BitBL T Destination Start Address Register. REG[8010h] is set to 3390h.

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.

3. Program the BitBLT Height Register to 101 - 1. REG[801Ch] is set to 64h (100 deci-
mal).

4. Program the BitBLT Operation Register to select the Transparent Move BitBLT in
Positive Direction. REG[8008h] bits 3-0 are set to 05h.

5. Program the BitBLT Background Color Register to select blue as the transparent col-
or. REG[8020h] is set to 001Fh (Full intensity blue in 16 bpp is 001Fh).

6. Program the BitBLT Color Format Register to select 16 bpp operations. REG[8000h]
bit 18 isset to 1.

7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320
= 140h

REG[8014h] is set to 0140h.

8. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[8000h] bit O is set to 1.

Note
The order of register setup isirrelevant as long as all relevant registers are programmed
before the BitBL T isinitiated.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 84

Epson Research and Development
Vancouver Design Center

9.2.9 Pattern Fill BitBLT with ROP

The Pattern Fill BitBLT with ROP fills a specified area of display memory with a pattern.
The pattern is repeated until the fill areais completely filled. Thefill pattern is limited to

an eight by eight pixel array and must be loaded to off-screen video memory before starting
the BitBLT. The pattern can be logically combined with the destination using any of the 16
ROP codes, but typically the copy pattern ROP is used (ROP code OCh).

A pattern is defined to be an array of 8x8 pixels and the pattern data must be stored in
consecutive bytes of display memory (64 consecutive bytesfor 8 bpp color depths and 128
bytes for 16 bpp color depths). For 8 bpp color depths the pattern must begin on a 64 byte
boundary, for 16 bpp color depths the pattern must begin on a 128 byte boundary.

This operation is self completing. Once the parameters have been entered and the BitBL T
started the BitBL T engine will fill all of the specified memory with the pattern.

Tofill an area using the pattern BitBLT, the BitBL T engine requires the location of the
pattern, the destination rectangle position and size, and the ROP code. The BitBL T engine
also needsto know which pixel from the patternisthefirst pixel in the destination rectangle
(the pattern start phase). This allows seamless redrawing of any part of the screen using the
pattern fill.

Example 16: Fill a 100 x 150 rectangle at the screen coordinates x = 10, y = 20 with
the pattern in off-screen memory at offset 27000h using a 320x240 dis-
play at a color depth of 8 bpp. The first pixel (upper left corner) of the
rectangle is the pattern pixel at x =3, y = 4.

1. Cadculatethe destination address (upper left corner of the destination rectangle), using
the formula:

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
=(20 % 320) + (10 x 1)
=6410
=190Ah

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixels = 320 for 8 bpp

Program the BitBL T Destination Start Address Register. REG[8010h] is set to 190Ah.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 85
Vancouver Design Center

2. Calculate the source address. Thisisthe address of the pixel in the pattern that is the
origin of the destination fill area. The pattern begins at offset 156K but the first pattern
pixel isat x = 3,y = 4. Therefore, an offset within the pattern itself must be calculated.

SourceAddress

= PatternOffset + StartPatternY x 8 x BytesPerPixel + StartPatternX x BytesPerPixel
= 156K + (4x8x 1)+ (3x1)

= 156K + 35

= 159779

= 27023h

where:
BytesPerPixel = 1 for 8 bpp
BytesPerPixel = 2 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800CHh] is set to 27023h.

3. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

4. Program the BitBLT Height Register to 150-1. REG[801Ch] is set to 95h (149 deci-
mal).

5. Program the BitBLT Operation Register to select the Pattern Fill with ROP.
REG[8008h] bits 3-0 are set to 6h.

6. Programthe BitBLT ROP Code Register to select Destination = Source. REG[8008h]
bits 19-16 are set to OCh.

7. Programthe BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
issetto 0.

8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.
BltMemoryOffset = ScreenStride + 2
=320+2
=160
= A0Oh

REG[8014H] is set to 00ACh.

9. Program the BitBLT Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Degtination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[8000h] bit O is set to 1.

Note
The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 86

Epson Research and Development
Vancouver Design Center

9.2.10 Pattern Fill BitBLT with Transparency

This operation isvery similar to the Pattern Fill BitBL T with the difference being that one
color can be specified to be transparent. Whenever the Transparent color isencountered in
the pattern data the destination is left asis. This operation is useful to create hatched or
striped patterns where the origina image shows through the hatching.

The requirements for this BitBL T are the same as for the Pattern Fill BitBLT the only
change in programming is that the BitBL T Operation field of REG[8008h] must be set to
07h and the BitBLT Background color register, REG[8020h] must be set to the desired
color.

Example 17: Fill a 100 x 150 rectangle at the screen coordinates x = 10, y = 20 with
the pattern in off-screen memory at offset 27000h using a 320x240 dis-
play at a color depth of 8 bpp. The first pixel (upper left corner) of the
rectangle is the pattern pixel at x =3, y = 4. Transparent color is blue (as-
sumes LUT index 1).

1. Caculatethe destination address (upper left corner of destination rectangle), using the
formula:

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
=(20x 320) + (10 x 1)
=6410
=190Ah

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixels = 320 for 8 bpp

Program the BitBL T Destination Start Address Register. REG[8010h] is set to 190Ah.

2. Calculate the source address. This is the address of the pixd in the pattern that is the
origin of the destination fill area. The pattern begins at offset 1M, but the first pattern
pixel isat x = 3,y = 4. Therefore, an offset within the pattern itself must be cal cul ated.

SourceAddress

= PatternOffset + StartPatternY x 8 x BytesPerPixel + StartPatternX x BytesPerPixel
= 156K + (4x8x 1)+ (3x1)

= 156K + 35

= 159779

= 27023h

where:
BytesPerPixel = 1 for 8 bpp
BytesPerPixel = 2 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 27023h.

3. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-
mal).

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 87

Vancouver Design Center

Program the BitBLT Height Register to 150-1. REG[801Ch] is set to 95h (149 deci-
mal).

Program the BitBLT Operation Register to select the Pattern Fill BitBLT with Trans-
parency. REG[8008h] bits 3-0 are set to 7h.

Program the BitBL T Background Color Register to select transparent color. This ex-
ample uses blue (LUT index 1) as the transparent color. REG[8020h] is set to O1h.

Program the BitBL T Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
issettoO.

Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320+2
=160
= A0Oh

REG[8014h] is set to AOh.

Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select =0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[8000h] bit O is set to 1.

Note
The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

Programming Notes and Examples
Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 88

Epson Research and Development
Vancouver Design Center

9.2.11 Move BitBLT with Color Expansion

The Move BitBLT with Color Expansion takes a monochrome bitmap as the source and
color expandsit into the destination. All bits set to one in the source are expanded to desti-
nation pixelsof the sel ected foreground color. All bits set to zero in the source are expanded
to pixels of the selected background color.

TheMoveBitBLT with Color Expansion isused to accel eratetext drawing. A monochrome
bitmap of afont, in off-screen video memory, occupies very little space and takes
advantage of the hardware acceleration. Since the foreground and background colors are
programmable, text of any color can be created.

The Move BitBLT with Color Expansion can move data from one rectangular area to
another, or either the source or destination may be specified to belinear. Storing rectangular
display datain linear format in off screen memory results in atremendous space saving.

Example 18: Color expand a 9 x 16 rectangle using the pattern in off-screen memory
at 27000h and move it to the screen coordinates x = 200, y = 20. Assume
a 320x240 display at a color depth of 16 bpp, Foreground color of black,
and background color of white.

1. Cadculatethe destination and source addresses (upper left corner of the destination and
source rectangles), using the formula.

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (20 x (320 x 2)) + (200 x 2)
=13200
=3390h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixels = 640 for 16 bpp

SourceAddress = 156K
= 27000h

Program the BitBL T Destination Start Address Register. REG[8010h] is set to 3390h.
Program the BitBLT Source Start Address Register. REG[800Ch] is set to 27000h.

2. Program the BitBLT Width Register to 9 - 1. REG[8018h] is set to 08h.
3. Program the BitBLT Height Register to 16 - 1. REG[801Ch] is set to OFh.

4. Program the BitBLT ROP Code/Color Expansion Register. REG[8008h] bits 19-16
are set to 7h.

5. Program the BitBLT Operation Register to select the Move BitBL T with Color Ex-
pansion. REG[8008h] bits 3-0 are set to OBh.

6. Program the BitBLT Foreground Color Register to select black (in 16 bpp black =
0000h). REG[8024h] is set to 0000h.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 89
Vancouver Design Center

7. Program the BitBLT Background Color Register to select white (in 16 bpp white =
FFFFh). REG[8024h] is set to FFFFh.

8. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit
18issetto 1.

9. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320
= 140h

REG[8014h] is set to 0140h.

10. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select =0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[8000h] bit O is set to 1.

Note
The sequence of register setup isirrelevant aslong as all required registers are pro-
grammed before the BitBLT is started.

9.2.12 Transparent Move BitBLT with Color Expansion

The Transparent Move BitBL T with Color Expansion is virtually identical to the Move
BitBLT with Color Expansion. This operation expands bits set to onein the source bitmap
to the foreground color. Bits set to zero in the source bitmap leave the corresponding desti-
nation pixel asis.

Setup and use this operation is exactly aswith the Move BitBLT with Color Expansion.

9.2.13 Read BitBLT

This Read BitBL T increases the speed of transferring data from the video memory to
system memory. ThisBitBL T complementsthe Write BitBLT and istypically used to save
apart of the display buffer to the system memory. Once the Read BitBL T begins, the
BitBLT engine remains active until all the pixels have been read.

During aRead BitBL T operation the BitBL T engine expectsto send a particular number of
WORDsto the CPU and it is the responsibility of the CPU to read the required amount of
data.

When performing BitBL T at 16 bpp color depth the number of WORDS to be sent isthe
same as the number of pixelsto be transferred as each pixel isone WORD wide. The
number of WORD writesthe BitBL T engine expectsis calculated using the following
formula.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 90

Epson Research and Development
Vancouver Design Center

WORDS = Pixels
= BitBLTWidth x BitBL THeight

When the color depth is 8 bpp the formula must take into consideration that the BitBLT
engine accepts only WORD accesses and pixels are only one BY TE. Thismay lead to a
different number of WORD transfers than there are pixelsto transfer.

The number of WORD accesses is dependant on the position of the first pixel within the
first WORD of each destination row. Isthe pixel stored in the low byte or the high byte of
the WORD? Read BitBLT phase is determined as follows:

Destination phase is 0 when the first pixel isin the low byte and the second pixel isin the
high byte of the WORD. When the destination phase is 0, bit O of the Destination Start
Address Register is 0. The destination phaseis 1if thefirst pixel of each destination row is
contained in the high byte of the WORD, the contents of the low byte areignored. When
the destination phase is 1, bit 0 of the Destination Start Address Register is set.

Depending on the destination phase and the BitBL T width, the last WORD may contain
only one pixel. Inthiscaseit isawaysin the low byte. The number of WORD writes the
BitBLT engine expects for 8 bpp color depths is shown in the following formula.

WORDS = ((BitBLTWidth + 1 + DestinationPhase) + 2) x BitBL THeight

TheBitBLT engine requires this number of WORDS to be sent from the local CPU before
it will end the Write BitBLT operation.

Example 19: Read 100 x 20 pixels at the screen coordinates x = 25, y = 38 and save
to system memory. Assume a display of 320x240 at a color depth of 8
bpp.

1. Caculate the source address (upper left corner of the screen BitBLT rectangle), using
the formula.

SourceAddress = (y x ScreenStride) + (x x BytesPerPixel)
=(38x320) + (25 % 1)
=12185
= 2F9%h

where:

BytesPerPixel = 1 for 8 bpp
BytesPerPixel = 2 for 16 bpp
ScreenStride = DisplayWidthinPixels x BytesPerPixels = 320 for 8 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 2F99h.

2. Program the BitBLT Width Register to 100 - 1. REG[8018h] is set to 63h (99 deci-

mal).

3. Program the BitBLT Height Register to 20 - 1. REG[801Ch] is set to 13h (19 deci-

mal).

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 91

Vancouver Design Center

10.

Program the Destination Phase in the BitBLT Destination Start Address Register. In
this example, the datais WORD aligned, so the destination phase is 0. REG[8010h] is
set to 00h.

Program the BitBLT Operation to select the Read BitBLT. REG[8008h] bits 3-0 are
set to 1h.

Program the BitBL T Color Format Select bit for 8 bpp operations. REG[8000h] bit 18
issettoO.

Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=320+2
=160
= A0Oh

REG[8014h] is set to 0AOh.

Calculate the number of WORDS the BitBL T engine expects to receive.

WORDS = ((BLTWidth + 1 + DestinationPhase) + 2) xBL THeight
=(100+1+0)+2x20
= 1000
= 3E8h

Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBL T engineto start. REG[8000h] bit
Oisset to 1, then wait until REG[8004h] bit O returns a 1.

Prior to reading from the BitBLT FIFO, confirm the BitBLT FIFO is not empty
(REG[8004h] hit 4 returnsa 1). If the BitBLT FIFO Not Empty Status (REG[8004h]
bit 6) returnsa 1 and the BitBLT FIFO Half Full Status (REG[8004h] hit 5) returnsa0
then you can read up to 8 WORDS. If the BitBLT FIFO Full Status returnsal, read
up to 16 WORDS. If the BitBLT FIFO Not Empty Status returnsa 0 (the FIFO is
empty), do not read from the BitBLT FIFO until it returnsa 1.

The following table summarizes how many words can be read from the BitBLT FIFO.

Table 9-8: Possible BitBLT FIFO Reads

BitBLT Status Register (REG[8004h]) Word Reads

FIFO Not Empty Status | FIFO Half Full Status FIFO Full Status Available

0

0 0 0 (do not read)

upto8

1
1
1

0 0
1 0 8
1 1

16

Note

The sequence of register initialization isirrelevant aslong as al required registers are
programmed before the BitBL T is started.

Programming Notes and Examples

Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 92 Epson Research and Development
Vancouver Design Center

9.3 S1D13A04 BitBLT Synchronization

A BitBLT operation can only be started if the BitBL T engine is not busy servicing another
BitBLT. Before anew operation is started, software must confirm the BitBL T Busy Status
bit (REG[8004h] bit 0) is set to zero. The status of this bit can either be tested after each
BitBLT operation, or before each BitBL T operation.

Testing the BitBLT Status After

Testing the BitBL T Active Status after starting anew BitBLT issimpler and less prone to
errors.

To test after each BitBL T operation, perform the following.
1. Program and start the BitBLT engine.

2. Wait for the current BitBL T operation to finish -- Poll the BitBLT Busy Status bit
(REG[8004h] hit 0) until it returnsaO.

3. Continue with program execution.

Testing the BitBLT Status Before

Testing the BitBL T Active Status before starting anew BitBLT results in better perfor-
mance, as both CPU and BitBL T engine can be running at the same time. Thisis most
useful for BitBL Tsthat are self completing (once started they don’t require any CPU assis-
tance). While the BitBL T engineis busy, the CPU can do other tasks. To test before each
BitBLT operation, perform the following.

1. Wait for the current BitBL T operation to finish -- Poll the BitBLT Busy Status bit
(REG[8004h] bit 0) until it returnsaO.

2. Program and start the new BitBL T operation.

3. Continue with program execution (CPU and BitBLT engine work independently).

This approach can pose problems when mixing CPU and BitBL T access to the display
buffer. For example, if the CPU writes apixel while the BitBLT engineis running and the
CPU writesapixd beforethe BitBLT finishes, the pixel may be overwritten by the BitBLT.
To avoid this scenario, always assure no BitBLT isin progress before accessing the display
buffer with the CPU, or don’t use the CPU to access the display buffer at all.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 93
Vancouver Design Center

9.4 S1D13A04 BitBLT Known Limitations

The S1ID13A04 BitBLT engine has the following limitations.

» The 2D Accelerator Data Memory Mapped register must not be accessed except during
BitBLT operations. Read from the register only during Read BitBL T operations and
write to the register only during Write and Color Expand BitBLTs. Accessing the

register at any other time may result in SID13A04 stopping to respond and the system
to freeze.

» The Read and Write BitBL T operations are not available when the SID13A04 is config-
ured for the Redcap or Dragonball without DTACK host bus interfaces.

» A BitBLT operation cannot be terminated once it has been started.

9.5 Sample Code

Sample code demonstrating how to program the SID13A04 BitBLT engineisprovided in
thefile AO4sample.zip. Thisfileis available on the internet at www.erd.epson.com.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 94

Epson Research and Development
Vancouver Design Center

10 Programming the USB Controller

USB (Universal Seria Bus) isan externa bus designed to ease the connection and use of
peripheral devices. USB incorporates a host/client architecture in which the host initiates
all data transactions and the client either receives or supplies data to the host.

USB offers the following features to the end user:

» Single plug typefor all peripheral devices.

« Support for up to 127 simultaneous devices.

» Speeds up to 12 Megabits per second.

* “hot-plugging” peripherals.

The S1D13A 04 USB controller supports revision 1.1 of the USB specification. The
S1D13A04 USB controller handles many common USB tasks without requiring local
processor intervention. For example, setup and data transfers are handled automatically by

the SID13A04 controller. The controller notifiesthelocal CPU, through aninterrupt, when
datais ready to be read from the FIFO or when data has been transmitted to the host.

This section demonstrates how to program and use the SID13A04 USB controller. Topics
covered include:

 Basic concepts such as registers and interrupts
* Initialization and data transfers
» S1D13A04 USB known issues.

10.1 Registers and Interrupts

10.1.1 Registers

Configuration, interrupt notification, and data transfers are all done using the SID13A04
USB registers. The USB registers are located 4000h bytes past the beginning of SID13A04
address space and should be written/read using 16 bit accesses.

On most systemsthe start of S1D13A04 address space, is fixed by the system design. The
S1D13A04 evaluation board usesa PCl interface, thusthe start of S1ID13A04 address space
may vary from one session to the next. Example code is written using a pointer to the USB
registers (pUSB). The USB examples do not show how to obtain the register address. For
adescription of how to get the register address when using the S5U13A04B00C eval uation
board, refer to the function hal AcquireController() in Section 11, “Hardware Abstraction
Layer” on page 112.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 95

Vancouver Design Center

10.1.2 Interrupts

The S1ID13A04 usesan interrupt to notify thelocal CPU when aUSB event, which requires
servicing, occurs. Events, such as USB reset and data transfer notifications generate inter-
rupts.

It is beyond the scope of this document to explain how to setup and configure the interrupt
system for the variety of platformsthe S1ID13A04 supports. The examples and flowcharts
assume there is one interrupt handling routine which will determine the cause of the
interrupt and call the appropriate handler function. It is assumed the user understands the
mechanics and architecture of their system well enough setup a routine which will receive
an interrupt notification and determine the cause of the interrupt.

10.2 Initialization

10.2.1 GPIO Setup

Initialization describesthe process of setting the registers state to enablethe USB controller
for use. There are two cases where the USB registers need to be initialized. When the
system is powered up and the registers need to be prepared for first use. The second time
the registers need to beinitialized is after receiving a RESET request from the host
controller.

Refer to Section 10.2.2, “USB Registers’ on page 96 for an example of the register initial-
ization sequence.

The S1D13A04 shares four lines between GPIO and USB use. Before any accesses are
made to the USB section the GPIO lines must be configured. To set the GPIO lines write
the binary value 0010xxxx-1101xxxX-00000000-xxxxxxxx (2xDx00xxh) to REG[64h],
the GPIO Status and Control register.

Note
X’srepresent adon't care state. Depending on other system configuration (i.e. panel
technology) certain don’t care bits may have to be set also. See the SID13A04 Hard-
ware Functional Specification, document number X37A-A-001, for more information
regarding the bits in the GPIO Status and Control register.

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 96

Epson Research and Development
Vancouver Design Center

10.2.2 USB Registers

The steps described below are typical of the startup of the SID13A04 USB controller.

* registersare set to an initia value

the SID13A04 is connected to a USB host controller
the host controller issues a RESET command

the USB registers are re-initialized

Asinitialization for both steps are similar it is recommended that one routine perform the
sequence. The following table depicts atypical register initialization sequence.

Table 10-1: USB Contraller Initialization Sequence

. Value
Register (hex) Notes
Enable the USB differential input receiver and indicate we are a bulk
REG[4040h] USBFC INPUT CONTROL 40 transfer self powered device. (for ISOchronous mode, use 43h)
USBPUP must be set to enable the USB interface and registers.
REG[4044] PIN 10 STATUS DATA 01 REG[4000h] to REG[403Ah] cannot be written until this bit is set.
REG[4000] CONTROL 84 |Enable the clocks and USB GPIO pins.
REG[4024] | EP3 RECEIVE FIFO STATUS 1C |Clear EP3 status.
REG[402C] USB EP4 TX FIFO STATUS 1C |Clear EP4 status
REG[4032] USB STATUS 7E |Clear EP2 valid bit
REG[4004] INTERRUPT STATUS O FF |Clear any pending USB interrupts
REG[4010] EP1 INDEX 00 |Set EP1 index to zero
REG[4018] EP2 INDEX 00 |Set EP2 index to zero
ext REG[00] VENDOR ID MSB ?? ) )
Provide appropriate vendor ID
ext REG[01] VENDOR ID LSB ??
ext REG[02] PRODUCT ID MSB ?? ) ]
Provide appropriate product ID
ext Reg[03] PRODUCT ID LSB ??
ext REG[0C] FIFO CONTROL 01 |Enable EP4 (FIFO) valid transfer mode.
REG[4002] INT ENABLE 0 OA |Enable interrupts for EP1 and EP3
REG[4004] INT STATUS O 0A [Make sure any pending interrupts are cleared.
INTERRUPT CONTROL
REG[4046 ENABLE 0 02 . o
INTERRUPT CONTROL Enable RESET and endpoints notifications
REG[4048] ENABLE 1 01
INTERRUPT CONTROL
REG[404A] STATUS/CLEAR O F .
INTERRUPT CONTROL Clear ALL interrupt status...
REG[404C] STATUS/CLEAR 1 F
REG[4000] CONTROL A4 |Enable the USB port for use
S1D13A04 Programming Notes and Examples

X37A-G-003-05

Issue Date: 2002/08/21




Epson Research and Development Page 97
Vancouver Design Center

The USB controller isready for operation with the following configuration:

» Endpoint 1 (mailbox receive) is configured for bulk OUT and Endpoint 2 (mailbox
transmit) is configured for interrupt IN. The functionality of these endpoints cannot be
altered.

» Endpoint 3 (FIFO receive) is configured for bulk in and Endpoint 4 (FIFO transmit) is
configured for bulk out. Endpoints 3 and 4 may also be configured for isochronous oper-
ation.

When the S1D13A04 is connected to a host controller, the host will issue a RESET
command to the SID13A04. In response to the RESET the SID13A04 clearsall USB
registersin therange REG[4000h] to REG[403Ah]. Theclient software must respond to the
reset and reprogram the USB registers. A host controller may issue a RESET at any time
during operation.

After the SID13A04 receivesthe RESET and re-initializesthe registers, the host controller
startsthe USB SETUP phase. The SETUP sequence is handled entirely by the SID13A04
USB controller. After the setup is complete the SID13A3 isready to begin transferring
data.

Note
Prior to initidizing the registers, host controller accesses are responded to with NAKSs,
After being configured, host controller accesses will be handled in the normal way.

Note
A Vendor 1D can be obtained through the USB Implementers Forum at
http://www.usb.org.

10.3 Data Transfers

The S1ID13A04 USB requiresvery little local CPU assistance during datatransfers. For the
most part data transfersfrom the host involve reading aFIFO dataregister when notified of
that the transfer is complete or writing a FIFO register and setting a’ready’ bit to send data
to the host.

The following sections expand on the data transfer mechanism.

10.3.1 Receiving Data from the Host - the OUT command

Datatransferred from the host to the SID13A04 is directed to either EndPoint 1 (the
mailbox) or EndPoint 3 (the FIFO). When the data packet has been successfully received
the S1D13A04 generates an interrupt.

On receipt of the interrupt the local CPU examines the masked interrupt status registers
REG[404Eh] and REG[4050h] to determine the source of the interrupt. If the interrupt
came from bit O of the Negative Interrupt Masked Status register, REG[4050h], the next
step is to examine REG[4004] to determine the exact cause of the interrupt.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 98 Epson Research and Development
Vancouver Design Center

Endpoint 1 - Mailbox Receive
If the cause of the interrupt is determined to be EndPoint 1 (REG[4004h] bit 1 = 1), then

the data is read from the EndPoint 1 data register (REG[4012h]). The following figure
shows the procedure for the CPU to read the mailbox register.

EP1 Receive

Clear EP1 Index Register
(REG[4010h] == 00h)
Initialize local index
(Idx = 0)

r

Read byte from EP 1

Receive Mailbox Data
(*pBuffer = (REG[4012h])
Increment the local index
(Idx++)

Read another
byte from the mailbox?
(ldx < 8)?

Yes

Clear EP1 interrupt status
(REG[4004h] = 20h)

Done

Figure 10-1: Endpoint 1 Data Reception

Note
In this diagram reference is made to two pseudo-variables:
ldx isan integer used as aloop counter
pBuffer is a pointer to eight bytes of memory to store the EP1 data

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 99
Vancouver Design Center

Endpoint 3 - FIFO Receive

If the cause of the interrupt is determined to be EndPoint 3, REG[4004h] bit 3 = 1b, then
the host controller has sent datato EndPoint 3. Figure 10-2: shows the procedure for
reading data from EndPoint 3.

An EndPoint 3 interrupt is generated when the number of bytesin the receive FIFO equal
the valuein the Receive FIFO Almost Full Threshold register (REG[403Ah], Index[06h]).
Thedefault valueissixty bytes. On systemswhere bulk transfers are used, the default value
for the receive FIFO threshold should be satisfactory.

Systemswith slow processors, high interrupt servicelatency, or configured for isochronous
operation may have to decrease this value to allow the CPU time to begin reading data
before the data transfer overflows the FIFO.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 100 Epson Research and Development
Vancouver Design Center

EP3 Receive

Did EP3 ACK?
(REG[4032h]b1 ==1)?

No S1D13A04
successfully
received a packet

Yes¢
EP3 NAK? Determine transfer size
(REG[4032h]b2 == 1)? (Count = min(Remaining, REG[4022h]))
Reduce size of remaining transfer
(Remaining -= Count)
S1D13A04 detected

a transaction error and
did not respond to the

OUT packet
Flush EP3 FIFO
- REG[4024h] = 10h Copy another
byte from FIFO?
No
(Cnt>0)?
Yes
Copy byte from FIFO to local memory
S1D13A04 (*pLocMem = *REG[4020h)]
responded to Point to next local memory - (pLocMem++)
the OUT packet Reduce Count - (Count--)
with a NAK
Transfer Done?
B Since the transfer is over
Remaining == 0)? '
( g ) Yes there is no need for OUT
packets to interrupt the
local CPU anymore
* (this is optional)
See 2.5.3 Disable EP3 Interrupt
“EP3 Interrupt Status - REG[4002h] &= ~08h
bit set by NAKs”
Figure 10-2: Endpoint 3 Data Reception
S1D13A04 Programming Notes and Examples

X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 101
Vancouver Design Center

10.3.2 Sending Data to the Host - the IN command

Datatransfersto the host controller occur when the host issues an IN command. The data
comes from EndPoint 2 (the mailbox) or EndPoint 4 (the FIFO). The datatransfer is
handled automatically by the S1ID13A04 and requires no CPU assistance.

Datatransfers, from the SLD13A04 to the host controller, are performed by writing the data
into either EndPoint 2 (mailbox) or EndPoint 4 (FIFO) dataregisters. After writing the data
to the registers a control bit indicating that mailbox or FIFO dataisvalid is set.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 102 Epson Research and Development
Vancouver Design Center

Endpoint 2 - Mailbox Transmit

Figure 10-3: shows the logical flow for sending data to the host controller using EndPoint
2, the mailbox.

EP2 Transmit

e /< See Section 10.4.4 on page 110
Clear EP2 valid bit
(REG[4032h] = 0)

¢

Clear EP2 index register
(REG[4018h] = 0)
Initialize local count
(Idx = 0)

Copy byte to EP2 data
— | (REG[401Ah] = *pBuffer)
Yes Increment pointer

Copy another byte?
(ldx < 8)?

(pBuffer++)
Clear EP2 interrupt status EP2 will now.respond to
(REG[4004h] = 04h) IN packets with data
Set EP2 valid instead of NAKs
(REG[4032h] = 01h)

Done

Figure 10-3: EndPoint 2 Data Transmission

Note
In this diagram reference is made to two pseudo-variables:
ldx isan integer used as aloop counter
pBuffer is a pointer to eight bytes of memory to send to the host

Endpoint 4 - Data Transmit

Transferring data to the host controller using the FIFO controller has additional overhead
as this routine must run tests to ensure error free data transmission.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 103
Vancouver Design Center

EP4 Transmit

Determine size of packet
(PktSize = min(Remain, FIFOSIZE))

Enqueue ZeroLengthPacket
(REG[4000h] = 40h)

Need to send ZLP?
(PktSize == 0)?

Initialize local Count
(Count =0)

Copy another Copy byte to EP4 FIFO
- byte to FIFO? - (REG[4028h] = *Buffer)
No (Count < PktSize)? Yes Reference next position
(pBuffer++)
y

Clear USB EP4 ACK
(REG[4032] = 10h)

See Section 10.4.1 on page 106, EP4 IRQ status
¢ must be cleared within 5 us of EP4 transmit FIFO
valid

Set EP4 IRQ enable - (REG[4002h] |= 10h)
Set Transmit FIFO valid - (REG[402Ch] = 20h)
Clear EP4 IRQ Status - (REG[4004h] = 10h)

Figure 10-4: Endpoint 4 Data Transmission

Note
In this example there are three variables:
PktSize is an integer containing the number of bytesto transfer in this packet
Count isan integer used for local loop control
pBuffer isa pointer to an array of at least FIFOSIZE bytes.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 104 Epson Research and Development
Vancouver Design Center

To ensure the host controller receives the packet error free, an interrupt handler for
EndPoint 4 must be configured and the flow control as shown in the following diagram
must be implemented.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development
Vancouver Design Center

Page 105

EP4 Int Handler

Packet actually sent?
(REG[402Ah] == 0)?

ZLP actually sent?
(REG[4000h]b6 == 0)?

The last packet was
not successfully

transmitted Yes

EP4 ACK?

No
| (REG[4032h]b4 ==

Last packet

short or ZLP?
Remain < FIFOSIZE

EP4 Int Handler is called after the host controller reads or fails to

read a packet. If the host controller successfully read the last packet
then the next packet can be loaded into the FIFO. If the host controller
failed to read the packet then the last packet must be loaded into

the FIFO

No

No

Y

Set Transmit FIFO Valid (REG[402Ch] = 20h)
Clear EP4 interrupt status (REG[4004h] = 10h)

Done

Final packet of transfer was successfully transmitted

Disable EP4 interrupt (REG[4002h] &= ~10h)
Clear EP4 interrupt status (REG[4004h] = 10h)

No ¢/{The last packet was a full packet ¢

Advance pointer to next packet
(pBuffer += FIFOSIZE)

Reduce remaining transfer size
(Remain -= FIFOSIZE)

Y

EP4 Data Transmission

Advance to end of buffer (pBuffer += Remain)
Reduce remaining count to O (Remain = 0)

This block is shown as a cleanup
step. It is not required.

Done

Figure 10-5: Endpoint 4 Interrupt Handling

Programming Notes and Examples
Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 106

Epson Research and Development
Vancouver Design Center

Note
In the diagram the variables:
pBuffer isa pointer to the local memory buffer containing the data to be transferred
to the host controller
Remain is an integer tracking the number of bytes still to be sent.

10.4 Known Issues

This section presents known issues with USB transfers when using the SID13A04 USB
controller.

10.4.1 EP4 NAK Status not set correctly in USB Status Register

The EP4 NAK status bit is not set in the USB Status Register (REG4032h]) when the
S1D13A04 responds to an IN request on EP4 with aNAK. Asaresult, alocal CPU
receiving an “EP4 Packet Transmitted” interrupt may mistakenly believe abus error
occurred in the most recently transmitted packet.

Work Around

Disable the EP4 Packet Transmitted interrupt when no datais queued for transmission to
thelocal CPU. The basic flow is:

In Chip Initialization Code

Do not enable ‘ EP4 Packet Transmitted’ bit in Interrupt Enable Register 0 (REG[4002h]).
When Local Side Wishes to Send Data

1. Putdatato transmit in FIFO.

2. Enable ‘EP4 Packet Transmitted’ bit in Interrupt Enable Register O.

3. Set FIFO Valid (if using FIFO Valid Mode == TRUE). See Section 10.4.2 on page
107 for more information on setting the FIFO Valid.

4. Clear ‘EP4 Packet Transmitted’ status bit in Interrupt Status Register 0 (REG[4004]).

Note
Step 4 istime-critical. It must be performed within 5 ps after Step 3.

In Packet Transmitted Interrupt Routine

Disable ‘ EP4 Packet Transmitted’ bit in Interrupt Enable Register O.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 107
Vancouver Design Center

10.4.2 Write to EP4 FIFO Valid bit cleared by NAK

After the local CPU sets EP4 FIFO Valid (in Endpoint 4 FIFO Status Register,
REG[402Ch]), the SID13A04 will erroneously clear the EP4 valid bit if the SID13A04 is
concurrently sending aNAK handshake in response to a previous IN token to EPA4.

Work Around

The work-around isin the ‘ EP4 Packet Transmitted’ interrupt routine. It requires the
interrupt routine to know whether the recently queued packet was a zero-length packet or
not, so that must be stored as a bit when the packet was loaded into the FIFO. On entry to
the ‘' EP4 Packet Transmitted’ interrupt routine:

For a non-zero-length Packet

Check the FIFO count. If it is non-zero, this error occurred. In that case, set FIFO Valid
again, clear the interrupt status bit, and exit the interrupt routine.

For a zero-length Packet

Check the Software EOT bit (in Control Register, REG[4000h]). If it is set, the FIFO Valid
write failed. In that case, set FIFO Valid again, clear the interrupt status bit, and exit the
interrupt routine

10.4.3 EP3 Interrupt Status bit set by NAKs

When receiving Bulk OUT packets from aHost PC, the S1ID13A 04 “Endpoint 3 Interrupt
Status’ interrupt typically is used to notify the peripheral firmware that a packet has been
received. This bit also serves as the “ Receive FIFO Valid” bit, so additional packets
addressed to Endpoint 3 are NAKed until this status bit is cleared. Once cleared, however,
it may become set by another packet which is NAKed by the SID13A04, causing the
Receive FIFO to become “Valid” again. The Host PC may immediately attempt to re-
transmit the NAK ed packet. The firmware should be written to prevent acyclein which the
FIFOis“Valid’ each timethat the Host PC sends an OUT packet.

The following rules govern the S1ID13A04' s behavior regarding packets received on
Endpoint 3:

Rule A. At the end of areceived OUT token to EP3 (and before the data is received), the
S1D13A04 decides to NAK the packet if the “EP3 Interrupt Status’ bit is set, and will
therefore throw away data received.

Rule B. At the end of areceived packet (including one which is NAKed), the SID13A04
sets the “EP3 Interrupt Status’ bit.

Rule C. Local firmware should clear the “EP3 Interrupt Status” bit after reading all bytes
out of the EP3 Receive FIFO.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 108

Epson Research and Development
Vancouver Design Center

The following figure shows how arepeating cycle of NAKed OUT packets may occur.

Host Device

IRQ#

ouT Data0O pkt OUT | | Datal pkt ouT Datal pkt

ACK NAK NAK

I s B e
b b & 4

5

Figure 10-6: Firmware Looping Continuously on Received OUT packets

At Point 1, the EP3 Interrupt activates because a packet has been received. In response, the
firmware reads the bytes out of the packet and clears the interrupt at Point 2. A second
packet isalready being received at Point 2, and the SID13A 04 has already decided to NAK
this packet dueto Rule A. At point 3, the SID13A 04 has NAK ed the packet and assertsthe
Interrupt status bit.

Again, thelocal firmwarerespondsto theinterrupt, and seeingitisonly a“NAK” interrupt,
clearsthe interrupt condition at Point 4. However, the Host PC has begun to retry the
second packet already, so the packet will again get NAKed dueto Rule B. Thiscycle could
continue until something changes the flow of OUT packets — for instance, an SOF at the
beginning of the next frame, or packet traffic directed at another device or endpoint.

Work Around

The normal program flow for a packet which the SID13A04 NAKsisasfollows:
1. S1D13A04 asserts IRQ# after NAKing areceived packet on EP3.
2. Loca CPU isinterrupted, enters interrupt routine.

3. Loca CPU reads Interrupt Status Register 0 (REG[4004h]) and sees “ EP3 Packet Re-
ceived” interrupt bit.

4. Loca CPU reads USB Status Register (REG[4032h]) and sees “NAK” bit set.

5. Loca CPU clears Interrupt Status Register 0 (REG[4004h]) “EP3 Packet Status” in-
terrupt bit.

6. Local CPU clears USB Status Register (REG[4032]) “NAK” bit.

The technique for avoiding this potential pitfall depends on the speed of the peripheral
CPU. The critical timing parameter is the time from the S1D13A04 asserting |RQ# to the
firmware clearing the “ EP3 Packet Received” bit in Interrupt Status Register 0.

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development

Vancouver Design Center

Page 109

For a Fast CPU

A CPU which can clear the Interrupt Status Register 0 bit within 10 msec after the
S1D13A04 asserts the IRQ# signal requires no extra code to prevent the potential cycling.
In this case, the CPU isfast enough to clear aNAKed packet’ s Interrupt Status Register O

bit before another packet can be received.

For a Slow CPU

A CPU which can’t meet the timing requirements for afast CPU above will require some
additional firmwareto eliminate the potential for this cycle. After successfully receiving a
packet on Endpoint 3 and emptying received data out of the FIFO, the firmware should

follow the flow in the following figure.

Note: Each cycle of this loop
should take less than 10 ms

Part of Endpoint 3 Interrupt Service Routine
(after FIFO has been emptied)

|

Clear USB Status
Register ACK and
NAK (bits 1 and 2)

l

Set Timout
(calculate for 50 ms)

—

Read USB Status
Register

NAK (bit 2) set?

Decrement Timeout

Clear "Endpoint 3
Interrupt Status" in

Timeout == 0?

Clear "USB Endpoint
3 NAK" in USB Status

No ves | Interrupt Status Register (bit 2) >
Register 0 (bit 3)
Figure 10-7: Endpoint 3 Program Flow for Sow CPU
Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 110

Epson Research and Development
Vancouver Design Center

10.4.4 “EP2 Valid Bit” in USB Status can be erroneously set by firmware

“Endpoint 2 Valid” isthe only bit in USB Status which is not written asa*“Yes/CLR” bit.
Therefore, the firmware must do a read-modify-write sequence when clearing other bitsin
Interrupt Status Register 0 (REG[4004h]), to preserve the state of “Endpoint 2 Valid”.
However, this read-modify-write could lead to erroneously setting the EP2 Valid bit if the
following sequence occurs with “EP2 Valid” set True:

1. Firmware reads Interrupt Status Register 0 to do aread-maodify-write
2. Datafrom EP2 issent to Host PC, causing SID13A04 to clear EP2 Vdid

3. Firmware writes modified value to Interrupt Status Register O

In this case, the firmware has set EP2 Valid in Step 3 after it was cleared by the Host PC,
erroneously validating EP2 for the next IN token from the Host.

Work Around

First, the firmware should do the read-modify-write operation as described above anytime
it ismodifying bitsin “USB Status”.

Second, when the firmware recognizes an interrupt for “ EP2 Packet Transmitted”, it should
immediately writea ‘0’ to USB Status Register. Thiswill clear the EP2 Valid bit in the
unlikely event that it was erroneously set during a read-modify-write operation.

10.4.5 Setting EP4 FIFO Valid bit while NAKing IN token

Bit 5 of REG[402Ch] indicates to the SID13A04 controller when datain the endpoint 4
FIFO isready to be transferred to the host computer. Changing the state of thisbit at certain
times may generate an error.

When the S1ID13A04 USB controller receives an endpoint 4 IN request and endpoint 4 is
not ready to transmit data (REG[402Ch] bit 5 = 0), the response is aNAK packet. If
endpoint 4 istoggled to aready to transmit state just before aNAK response packet is sent,
the controller may erroneously send a zero length packet instead. When this happens, the
datatoggle state will be incorrectly set for the next endpoint 4 data transmit.

The following timing diagram shows the error occurring in section 3.

1 2 ——— == — = — —

\

. |

Host to Device - INEP4 Token PKT IN EP4 Token PKT IN EP4 Token PKT |

Device to Host NAK RPLY DATA PKT RPLY ZERO Length PKT |
CPU Write to

EP4 VALD=1 | —/ N~ /

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



Epson Research and Development Page 111

Vancouver Design Center

This unexpected occurrence of a zero length packet may cause file system handling errors
for some operating systems.

Work Around
There are two software solutions for this occurrence.
Disable USB Receiver before setting the EP4 FIFO Valid bit

The first solution involves disabling the USB receiver to avoid responding to an EP4 IN
packet. During the time the USB receiver is disabled the EP4 FIFO Valid bit is set.

When the local CPU isready to send data on endpoint 4 the steps to follow are:

2. Disablethe USB differential input receiver (REG[4040h] bit 6 = 0)
Wait aminimum of 1us. If needed, delays may be added

Enable the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)

Clear the EP4 Interrupt status bit (REG[4004h] bit 4 = 1)

Enable the USB differential input receiver (REG[4040h] bit 6 = 1)

o gk w

Note
Steps 1 through 5 are time critical and must be performed in less than 6 ps.

Note
To comply with “EP4 NAK Status not set correctly in USB Status register”, steps 3 and
4 must be completed within 5 s of each other. For further information on “EP4 NAK
Status not set correctly in USB Status register”, see Section 10.4.1, “EP4 NAK Status
not set correctly in USB Status Register” .

EP4 FIFO Valid bit set after NAK and before the next IN token

The second solution isto wait until immediately after the USB has responded to an IN
request with a NAK packet before setting the transmit FIFO valid bit. This solution is
recommended only for fast processors.

When the local CPU isready to send data on endpoint 4, it must first detect that a NAK
packet has been sent. Thisis done by reading the EP4 Interrupt Status bit (REG[4004h] bit
4). If the EP4 FIFO Valid bit was not set, the EP4 Interrupt Status bit is set only if aNAK
packet has been sent. When thelocal CPU detectsthe NAK it must immediately set the EP4
FIFO Valid bit (before responding to the next IN token).

After filling the EP4 FIFO the stepsto follow before setting the EP4 FIFO Valid bit are:

1. Clear the EP4 Interrupt Status bit (REG[4004h] bit 4)
2. Read the EP4 Interrupt Status bit (REG[4004h] bit 4) until it is set
3. Set the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)

The setting of the EP4 FIFO Valid bit istime critical. The EP4 FIFO Valid bit must be set
within 3 s after the EP4 Interrupt Status has been set internally by the SID13A04.

Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21

X37A-G-003-05



Page 112

Epson Research and Development
Vancouver Design Center

11 Hardware Abstraction Layer

11.1 Introduction

The S1ID13A04 Hardware Abstraction Layer (HAL) isacollection of routines intended to
simplify the programming for the S5U13A04B00C eval uation board. Programmers can use
the HAL to assist in rapid software prototyping for the SSU13A04B00C evaluation board.

TheHAL routinesare divided into discrete functional blocks. The functionsfor startup and
clock control offer specific support for the SSU13A04B00C eval uation board, while other
routines demonstrate memory and register access techniques. For acompletelist, see Table

11-1:, “HAL Library API” .

11.2 API for the HAL Library

The following table lists the functions provided by the SID13A04 HAL library.

Table 11-1: HAL Library API

Function

Description

Startup

halAcquireController

This routine loads the driver required to access the S1D13A04, locates the and returns the address of

the controller.

hallnitController

Initializes the controller for use. This includes setting the programmable clock and initializing registers as

well as setting the lookup table and clearing video memory.

Memory Access

halReadDisplay8 Reads one byte from display memory
halReadDisplayl6 |Reads one word from display memory
halReadDisplay32 | Reads one double word from display memory
halWriteDisplay8 Writes one byte to display memory
halWriteDisplayl6 | Writes on word to display memory
halWriteDisplay32 | Writes on double word to display memory

Register Access
halReadReg8 Reads one byte from a control register
halReadReg16 Reads one word from a control register
halReadReg32 Reads one dword from a control register
halWriteReg8 Writes one byte to a control register
halWriteReg16 Writes one word to a control register
halWriteReg32 Writes one dword to a control registers

Clock Support

halSetClock Programs the ICD2061A Programmable Clock Generator.
halGetClock Returns the frequency of the requested ICD2061A clock

Miscellaneous

halGetVersioninfo

Returns a standardized startup banner message

halGetLastError Returns the numerical value of the last error and optionally an ASCII string describing the error
hallnitLUT This routine sets the LUT to uniform values for color/mono panels at all color depths
S1D13A04 Programming Notes and Examples

X37A-G-003-05

Issue Date: 2002/08/21




Epson Research and Development Page 113
Vancouver Design Center

11.2.1 Startup Routines

There are two routines dedicated to startup and initializing the SID13A04. Typicaly these
two functions are the first two HAL routines a program will call.

The startup routines locate the SID13A04 controller and initialize HAL datastructures. As
the name suggests, the initiaization routine prepares the SID13A04 for use. Splitting the
startup functionality allows programs to start and locate the S1ID13A04 but delay or
possibly never initialize the controller.

Boolean halAcquireController(UInt32 * pMem, UInt32 * pReg)

Description: Thisroutine initializes data structures and initiates the link between the application soft-
ware and the hardware. When the S1D13A04 HAL is used this routine must be the first
HAL function called.

On PCI platforms, the routine attempts to load the S1D13xxx driver. If the driver loads
successfully then a check is made for the existence of an SID13A04.

Parameters: pMem Pointer to an unsigned 32-hit integer which will receive the offset to the first
byte of display memory. The offset may be cast to a pointer to access
display memory.

pReg Pointer to an unsigned 32-bit integer which will receive the offset to the first
byte of register space. The offset may be cast to a pointer and to access
S1D13A04 registers.

On Win32 systems the returned offsets correspond to alinear addresses
within the callers address space.

Return Value: TRUE (non-zero) if the routine is able to locate an SID13A04.
pMem will contain the offset to the first byte of display memory.
pRegs will contain the address of the first 13A04 control register.

FALSE (zero) if an S1ID13A04 is not located.
pMem and pRegs will be undefined.
If additional error information is required call hal GetL astError().

Note

1. Thisroutine must be called before any other HAL routineis called.

2. For programs written for the S1D13A 04 evaluation board, an application may call
this routine to obtain pointers to the registers and display memory and then perform
all SID13A04 accesses directly.

3. Thisroutine does not modify S1D13A04 registers or memory.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 114 Epson Research and Development
Vancouver Design Center

Boolean hallnitController(UInt32 Flags)

Description: This routine performs the initialization portion of the startup sequence.
Initialization of the SID13A04 evaluation board consists of several steps:
- Program the ICD2061A clock generator
- Set theinitial state of the control
- Set the LUT to its default value
- Clear video memory

All display memory and nearly every control register can or will be affected by the initial-
ization.

Any, or al, of theinitialization steps may be bypassed according to values contained in the
Flags parameter. This allows for conditional run-time changes to theinitiaization.

Parameters: Flags contains initialization specific information. The default action of the HAL isto per-
form al initialization steps. Flags contain specific instructions for bypassing certain ini-
tialization steps. The values for Flags are:

fDONT_RESET
Thefirst step of the initialization process is to perform a software.
Setting this flag bypasses the software reset.

fDONT_SET_CLOCKS
Setting this flag causes initialization to skip programming the ICD2061A
clock generator. Normally the clock on the S5U13A04B00C is programmed
to configured values during initialization.

fDONT_INIT_REGS
Bypass register initialization. Normally the init process sets the register
values to a known state. Setting this flag bypasses this step.

fDONT_INIT_LUT
Bypass |ook-up tableinitialization.

fDONT_CLEAR_MEM
Thefinal step of theinitialization processis to clear video display memory.
Setting this flag will bypass this step.

Return Value: TRUE (non-zero) if theinitialization was successful.

FALSE (zero) if the HAL was unableto initialize the SID13A04
If additional error information is required call hal GetL astError()

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 115
Vancouver Design Center

11.2.2 Memory Access

The S1D13A04 HAL includes six memory access functions. The primary purpose of the
memory access functions isto demonstrate how to access display memory using the C
programming language. Most programs that need to access memory will bypass the HAL
and access memory directly.

UInt8 halReadDisplay8(UInt32 Offset)

Description: Reads and returns the value of one byte of display memory.
Parameters: Offsat A 32 bit offset to the byte to be read from display memory
Return Value: The value of the byte at the requested offset.

UInt16 halReadDisplay16(UInt32 Offset)
Description: Reads and returns the value of one word of display memory.

Parameters: Offset A 32 bit byte offset to the word to be read from display memory
To prevent system slowdowns and possibly memory faults, Offset should be
aword multiple.

Return Value: The value of the word at the requested offset.

UInt32 halReadDisplay32(UInt32 Offset)
Description: Reads and returns the value of one dword of display memory.

Parameters: Offsat A 32 bit byte offset to the dword to be read from display memory.
To prevent system slowdowns and possibly memory faults, Offset should be
adword multiple.

Return Value: The value of the dword at the requested offset.

void halWriteDisplay8(UInt32 Offset, UInt8 Value, UInt32 Count)

Description: Writes a byte into display memory at the requested address.
Parameters: Offset A 32 bit byte offset to the byte to be written to display memory.
Value The byte value to be written to display memory.
Count The number of timesto repeat Value in memory. By including a count (or
loop) value this function can efficiently fill display memory.
Return Value: Nothing.
Programming Notes and Examples S1D13A04

Issue Date: 2002/08/21 X37A-G-003-05



Page 116 Epson Research and Development
Vancouver Design Center

void halWriteDisplay16(UInt32 Offset, UInt16 Value, UInt32 Count)

Description: Writes aword into display memory at the requested offset.

Parameters: Offset a 32 bit byte offset to the byte to be written to display memory. To prevent
system dowdowns and possibly memory faults, Offset should be aword
multiple.

Value the word value to be written to display memory.
Count the number of times to repeat the Value in memory. By including a count (or

loop) value this function can efficiently fill display memory.
Return Value: Nothing.

void halWriteDisplay32(UInt32 Offset, UInt32 Value, UInt32 Count)

Description: Writes a dword into display memory at the requested offset.

Parameters: Offset A 32 hit byte offset to the byte to be written to display memory. To prevent
system sowdowns and possibly memory faults, Offset should be a dword
multiple.

Value The dword value to be written to display memory.
Count The number of times to repeat the Value in memory. By including a count

(or loop) value this function can efficiently fill display memory.
Return Value: Nothing.

11.2.3 Register Access
The S1D13A04 HAL includes six register access functions. The primary purpose of the
register access functions is to demonstrate how to access the SID13A04 control registers

using the C programming language. Most programs that need to access the registers will
bypass the HAL and access the registers directly.

UInt8 halReadReg8(UInt32 Index)

Description: Reads and returns the contents of one byte of an SID13A04 register at the requested off-
set. No S1ID13A04 registers are changed
Parameters: Index 32 hit offset to the register to read. Index is zero based from the beginning

of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will be read and if Index == 8000h then the BitBLT
Control Register will be read)

Return Value: The value read from the register.

Use caution in selecting the index and when interpreting values returned from
halReadReg8() to ensure the correct meaning is given to the values. Changing between big
endian and little endian will move relative register offsets.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development
Vancouver Design Center

Page 117

UInt16 halReadReg16(UInt32 Index)

Description: Reads and returns the contents of one word of an SID13A04 register at the requested off-
set. No S1D13A04 register are changed.

Parameters: Index 32 hit offset to the register to read. Index is zero based from the beginning
of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will beread and if Index == 8000h then the BitBLT
Control Register will be read)

Return Value: The word value read from the register.

Use caution in determining the index and interpreting the values returned from
hal ReadReg16() to ensure the correct meaning is given to the values. Changing between
big and little endian will move relative register offsets resulting in different values.

UInt16 halReadReg32(UInt32 Index)

Description: Reads and returns the dword value of an S1ID13A04 register at the requested offset. No
S1D13A04 register are changed.
Parameters: Index 32 bit offset to the register to read. Index is zero based from the beginning

of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will be read and if Index == 8000h then the BitBLT
Control Register will be read)

Return Value: The dword value read from the register.

void halWriteReg8(UInt32 Index, UInt8 Value)
Description: Writes an 8 bit value to the register at the requested offset.

Parameters: I ndex

Vaue

Return Value: Nothing.

32 bit offset to the register to write. Index is zero based from the beginning
of register address space. (e.g. if Index == 04h then the Memory Clock
Configuration register will be written to and if Index == 8000h then the
BitBLT Control Register will be written to)

The byte value to write to the register. Changing between big and little
endian will move relative register offsets. Use caution in interpreting the
index and values to write to registers using the halWriteReg8() function to
ensure that register are programmed correctly.

Programming Notes and Examples
Issue Date: 2002/08/21

S1D13A04
X37A-G-003-05



Page 118 Epson Research and Development
Vancouver Design Center

void halWriteReg16(UInt32 Index, UInt16 Value)
Description: Writes a 16 bit value to the SID13A04 register at the requested offset.

Parameters: Index 32 bit byte offset to the register to write. Index is zero based from the
beginning of register address space. (e.g. if Index == 04h then the Memory
Clock Configuration register will be written to and if Index == 8000h then
the BitBLT Control Register will be written to)

Value The word value to write to the register.
Return Value: Nothing.

Changing between big and little endian will move relative register offsets. Use caution in
interpreting the index and values to write to registers using the halWriteReg8() function to
ensure that register are programmed correctly.

void halWriteReg32(UInt32 Index, UInt32 Value)
Description: Writes a 32 bit value (dword) to the register at the requested off set.

Parameters: Index 32 bit byte offset to the register to write. Index is zero based from the
beginning of register address space. (e.g. if Index == 04h then the Memory
Clock Configuration register will be written to and if Index == 8000h then
the BitBLT Control Register will be written to)

Value The dword value to write to the register.
Return Value: Nothing.

11.2.4 Clock Support

To maximizeflexibility, SID13A 04 evaluation boardsinclude a programmable clock. The
following HAL routines provide support for the programmabl e clock.

Boolean halSetClock(UInt32 ClkiFreq, UInt32 Clki2Freq)

Description: This routine program the ICD2061A programmable clock generator to the specified fre-
quency.
Parameters: ClkiFreq The desired frequency, in Hz, for CLKI.

Clki2Freq  Thedesired frequency, in Hz, for CLKI2.
dwFrequencyThe desired frequency (in Hz).
Return Value: TRUE (non-zero) if the function was successful in setting the clock.

FALSE (zero) if there was an error detected while trying to set the clock.
If additional error information is required call hal GetL astError().

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 119
Vancouver Design Center

UInt32 halGetClock(CLOCKSELECT Clock)

Description: Returns the frequency of the clock input identified by 'Clock'.
Parameters: Clock Indicates which clock to read. This value can be CLKI or CLKI2.
Return Value: The frequency, in Hz, of the requested clock.

11.2.5 Miscellaneous

The miscellaneous function are an assortment of routines, determined to be beneficial to a
number of programs and hence warranted being included in the HAL .

void halGetVersionIinfo(const char * szProgName, const char * szDesc, const char * szVersion,
char * szRetStr, int nLength)

Description: Thisroutine creates a standardized startup banner by merging program and HAL specific
information. The newly formulated string is returned to the calling program for display.
Thefinal formatted string will resemble:

13A04PROGRAM - Internal test and diagnostic program - Build: 1234 [HAL: 1234]
Copyright (c) 2000,2001 Epson Research and Devel opment, Inc.
All Rights Reserved.

Parameters: szProgName Pointer to an ASCIIZ string containing the name of the program.
(e.g. “PROGRAM")
szDesc Pointer to an ASCIIZ string containing a description of what this program

isintended to do. (e.g. “Internal test and diagnostic program”)

szVersion Pointer to an ASCI1Z string containing the build info for this program. This
should be the revision info string as updated by V SS.
(e.g. “$Revision: 30 $")

szRetStr Pointer to a buffer into which the product and version information will be
formatted into.

nLength Total number of bytesin the string pointed to by szRetStr. This function will
write nLength or fewer bytes to the buffer pointed to by szRetStr.

Return Value: Nothing.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 120 Epson Research and Development
Vancouver Design Center

int halGetLastError(char * ErrMsg, int MaxSize)
Description: Thisroutineretrievesthe last error detected by the HAL.
Parameters. ErrMsg When hal GetL astError() returns ErrMsg will point to the textual
error message. |If ErrMsgisNULL then only the error code will be
returned.

MaxSize Maximum number of bytes, including the final "\O' that can be
placed in the string pointed to by ErrMsg.

Return Value: The numerical value of the internal error number.

HALEXTERN void hallnitLUT(void)
Description: To standardize the appearance of test and validation programs, it was
decided the HAL would have the ahility to set the lookup table to uniform
values.

Theroutine cracksthe color depth and display typeto determinewhich LUT
values to use and proceeds to write the LUT entries.

Parameters. None

Return Value: Nothing.

S1D13A04 Programming Notes and Examples
X37A-G-003-05 Issue Date: 2002/08/21



Epson Research and Development Page 121
Vancouver Design Center

12 Sample Code

Example source code demonstrating programming the SID13A04 using the HAL library is
available on the internet at www.erd.epson.com.

Programming Notes and Examples S1D13A04
Issue Date: 2002/08/21 X37A-G-003-05



Page 122 Epson Research and Development
Vancouver Design Center

13 Sales and Technical Support

Japan
Seiko Epson Corporation

Electronic Devices Marketing Division

421-8, Hino, Hino-shi
Tokyo 191-8501, Japan
Tel: 042-587-5812

Fax: 042-587-5564
http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd.
20/F., Harbour Centre

25 Harbour Road
Wanchai, Hong Kong

Tel: 2585-4600

Fax: 2827-4346
http://lwww.epson.com.hk/

North America

Epson Electronics America, Inc.
150 River Oaks Parkway

San Jose, CA 95134, USA

Tel: (408) 922-0200

Fax: (408) 922-0238
http://lwww.eea.epson.com/

Europe

Epson Europe Electronics GmbH
Riesstrasse 15

80992 Munich, Germany

Tel: 089-14005-0

Fax: 089-14005-110
http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology
& Trading Ltd.

10F, No. 287

Nanking East Road

Sec. 3, Taipei, Taiwan

Tel: 02-2717-7360

Fax: 02-2712-9164
http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd.
No. 1

Temasek Avenue #36-00
Millenia Tower

Singapore, 039192

Tel: 337-7911

Fax: 334-2716
http://www.epson.com.sg/

S1D13A04
X37A-G-003-05

Programming Notes and Examples
Issue Date: 2002/08/21



	S1D13A04 LCD/USB Companion Chip
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Identifying the S1D13A04
	3 Initialization
	4 Memory Models
	4.1 Display Buffer Location
	4.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)
	Figure 4�1: Pixel Storage for 1 Bpp in One Byte of Display Buffer

	4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)
	Figure 4�2: Pixel Storage for 2 Bpp in One Byte of Display Buffer

	4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)
	Figure 4�3: Pixel Storage for 4 Bpp in One Byte of Display Buffer

	4.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)
	Figure 4�4: Pixel Storage for 8 Bpp in One Byte of Display Buffer

	4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)
	Figure 4�5: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer


	5 Look-Up Table (LUT)
	5.1 Registers
	5.1.1 Look-Up Table Write Register
	5.1.2 Look-Up Table Read Registers

	5.2 Look-Up Table Organization
	Table 5�1: Look-Up Table Configurations
	5.2.1 Gray Shade Modes
	Table 5�2: Suggested LUT Values for 1 Bpp Gray Shade
	Table 5�3: Suggested LUT Values for 4 Bpp Gray Shade
	Table 5�4: Suggested LUT Values for 4 Bpp Gray Shade
	Table 5�5: Suggested LUT Values for 8 Bpp Gray Shade

	5.2.2 Color Modes
	Table 5�6: Suggested LUT Values for 1 bpp Color
	Table 5�7: Suggested LUT Values for 2 bpp Color
	Table 5�8: Suggested LUT Values for 4 bpp Color
	Table 5�9: Suggested LUT Values 8 bpp Color�



	6 Power Save Mode
	6.1 Overview
	6.2 Registers
	6.2.1 Power Save Mode Enable
	6.2.2 Memory Controller Power Save Status

	6.3 LCD Power Sequencing
	6.4 Enabling Power Save Mode
	6.5 Disabling Power Save Mode

	7 SwivelView‘
	7.1 SwivelView Registers
	Table 7�1: SwivelView Mode Select Bits

	7.2 Examples
	7.3 Limitations
	7.3.1 SwivelView 0˚ and 180˚
	7.3.2 SwivelView 90˚ and 270˚


	8 Picture-In-Picture Plus
	Figure 8�1: Picture-in-Picture Plus with SwivelView disabled
	8.1 Registers
	Table 8�1: 32-bit Address Increments for PIP+ X Position in SwivelView 0˚ and 180˚
	Table 8�2: 32-bit Address Increments for Color Depth
	Table 8�3: 32-bit Address Increments for Color Depth
	Table 8�4: 32-bit Address Increments for Color Depth

	8.2 Picture-In-Picture-Plus Examples
	8.2.1 SwivelView 0˚ (Landscape Mode)
	Figure 8�2: Picture-in-Picture Plus with SwivelView disabled

	8.2.2 SwivelView 90˚
	Figure 8�3: Picture-in-Picture Plus with SwivelView 90˚ enabled

	8.2.3 SwivelView 180˚
	Figure 8�4: Picture-in-Picture Plus with SwivelView 180˚ enabled

	8.2.4 SwivelView 270˚
	Figure 8�5: Picture-in-Picture Plus with SwivelView 270˚ enabled


	8.3 Limitations
	8.3.1 SwivelView 0˚ and 180˚
	8.3.2 SwivelView 90˚ and 270˚


	9 2D BitBLT Engine
	9.1 Registers
	Table 9�1: BitBLT FIFO Words Available
	Table 9�2 : BitBLT ROP Code/Color Expansion Function Selection
	Table 9�3 : BitBLT Operation Selection
	Table 9�4 : BitBLT Source Start Address Selection

	9.2 BitBLT Descriptions
	9.2.1 Write BitBLT with ROP
	Table 9�5: Possible BitBLT FIFO Writes

	9.2.2 Color Expansion BitBLT
	Table 9�6: Possible BitBLT FIFO Writes

	9.2.3 Color Expansion BitBLT With Transparency
	9.2.4 Solid Fill BitBLT
	9.2.5 Move BitBLT in a Positive Direction with ROP
	Figure 9�1: Move BitBLT Usage

	9.2.6 Move BitBLT in Negative Direction with ROP
	9.2.7 Transparent Write BitBLT
	Table 9�7: Possible BitBLT FIFO Writes

	9.2.8 Transparent Move BitBLT in Positive Direction
	9.2.9 Pattern Fill BitBLT with ROP
	9.2.10 Pattern Fill BitBLT with Transparency
	9.2.11 Move BitBLT with Color Expansion
	9.2.12 Transparent Move BitBLT with Color Expansion
	9.2.13 Read BitBLT
	Table 9�8: Possible BitBLT FIFO Reads


	9.3 S1D13A04 BitBLT Synchronization
	9.4 S1D13A04 BitBLT Known Limitations
	9.5 Sample Code

	10 Programming the USB Controller
	10.1 Registers and Interrupts
	10.1.1 Registers
	10.1.2 Interrupts

	10.2 Initialization
	10.2.1 GPIO Setup
	10.2.2 USB Registers
	Table 10�1: USB Controller Initialization Sequence


	10.3 Data Transfers
	10.3.1 Receiving Data from the Host - the OUT command
	Figure 10�1: Endpoint 1 Data Reception
	Figure 10�2: Endpoint 3 Data Reception

	10.3.2 Sending Data to the Host - the IN command
	Figure 10�3: EndPoint 2 Data Transmission
	Figure 10�4: Endpoint 4 Data Transmission
	Figure 10�5: Endpoint 4 Interrupt Handling


	10.4 Known Issues
	10.4.1 EP4 NAK Status not set correctly in USB Status Register
	10.4.2 Write to EP4 FIFO Valid bit cleared by NAK
	10.4.3 EP3 Interrupt Status bit set by NAKs
	Figure 10�6: Firmware Looping Continuously on Received OUT packets
	Figure 10�7: Endpoint 3 Program Flow for Slow CPU

	10.4.4 “EP2 Valid Bit” in USB Status can be erroneously set by firmware
	10.4.5 Setting EP4 FIFO Valid bit while NAKing IN token


	11 Hardware Abstraction Layer
	11.1 Introduction
	11.2 API for the HAL Library
	Table 11�1: HAL Library API
	11.2.1 Startup Routines
	11.2.2 Memory Access
	11.2.3 Register Access
	11.2.4 Clock Support
	11.2.5 Miscellaneous


	12 Sample Code
	13 Sales and Technical Support


